Click here to return to main plasmids page









Paper Name

Reference

Lab Name

Distribute?

Resistance

Notes

Target

p7927

[1]

pZaf

yes

amp

LacZ sequences antagonize packaging?

 

pSU-5697

[1]

pNafB

yes

blast

replaced by pfwB

 

pU-5864

[1]

pNKaf

yes

amp


 

pU-7064

[1]

pSNaf

yes

amp


 

pU-7257

[1]

pQNaf

yes

amp


 

pU-7452

[1]

pZNaf

yes

amp


 

pU-7981

[1]

pVNaf

yes

amp


 

pU-10151

[1]

pWNaf

yes

amp


 

pU-12781

[1]

pXNaf

yes

amp


 

pU-GFP

[1]

pNf

yes

amp


 

pUP-7665

[1]

pYNaf

yes

amp


 

pCI-PRE

[2]

pCI-PRE

yes

amp


 

pYafB

[1]

pYafB

yes

blast


 

pLucf

[3]

pLucf

yes

zeo

replaced by pCLucf








BPV1

pBPVL1-GFP

[4]

phLsf

yes

zeo

Self-packages in TT-BPVL2 stable line.  L1-only capsid propagation.


pBPVL1L2

[4]

pCL?

yes

kan

Self-packages for bulk L1+L2 capsid propagation.


pADAP-L1

[1]

pCAL

yes

kan



pZ-L1P

[1]

pZL

yes

amp

BPV1.  Use pADAP-L1 instead


pADAP-L1P

[1]

pAL

yes

amp

BPV1.  Use pADAP-L1 instead


pL1-L2

[1]

pL?Q

yes

kan

BPV1.  Use pSheLL instead


pZ-L2P

[15]

pM?

yes

amp



pBPV-L2P

[45]

p?P

yes

amp

L2 stable expression plasmid used to make TT-BPVL2 line


pBPVL2HA

[6]

pM?HA

yes

amp

HA-tagged BPV1 L2


pSheLL-HA

[6], unpublished

pXL?HA

yes

kan

HA-tagged BPV1 L2 in context of SheLL (L1+L2) expression plasmid








CRPV

pCRPVL1

[7]

p¢Lw

yes

kan


 

pCRPVL2

[7]

p¢?

yes

kan


 







HPV1

pPoLw

unpublished

pPöLw

not yet

kan

HPV1 gives poor L1 yield and HPV1 pseudovirus is poorly infectious.


poL2

unpublished

pö?

not yet

kan









HPV2

pRaLw

unpublished, EF362755

pRäLw

not yet

kan

HPV2 pseudovirus has a very high particle to infectivity ratio

 

paL2

unpublished

pä?

not yet

kan









HPV5

p5L1w

[8] DQ080001

p5L1w

yes

zeo

HPV5 has high particle to infectivity ratio on most cell types


p5L2w

[9] DQ080001

p5L2w

yes

zeo



p5L1h

[9]

p5L1h

yes

zeo

slightly better titer yield than p5L1w








HPV6

p6L1

[7]

p6L, p6aL1

yes

kan

Replaced by p6L1B


p6L1B

[7]

p6LB

yes

blast



p6L2

[7]

p6?w

yes

kan









HPV16

p16L1-GFP

[10]

phüLsf

Addgene.org

zeo

Self-packages in TT-16L2 stable line.  L1-only capsid propagation.


p16L1h

[11]

püL

yes

amp

Replaced by p16L1-GFP


p16L2h

[11]

pü?

yes

amp

replaced by p16L2w

 

p16L2P

[4]

pü?P

yes

amp

L2 stable expression plasmid used to make TT-16L2 line


p16L2w

[4]

pü?w

yes

kan



pXuLL

[12]

pXüL?

yes

zeo

Replaced by p16sheLL


pOhuL

[13], unpublished

pOhüL

yes

zeo

Minimal SV40 Ori (lacks SV40 promoter activity).  Requires Woodworth MTA. 

 

puL1B

[14]

püL1B, pL1B

yes

blast

Replaced by p16L1-GFP


puL1fB

[14]

püL1fB

yes

blast

Replaced by p16L1-GFP


pC175S

[10]

p175ü

yes

zeo

L1 cysteine 175 -> serine.  Pseudovirus infectious but incapable of full maturation


pC428S

[10]

p428ü

yes

zeo

L1 cysteine 428 -> serine.  Pseudovirus is extremely fragile and poorly infectious


p16mL1L2

[1015]

pChüL?

yes

zeo

p16L1L2 with L1 C175S mutation


p16mSheLL

unpublished

pCLLw

yes

amp

p16sheLL with L1 C175S mutation


p16L2HA

unpublished

pü?HA

yes

kan

HA-tagged HPV16 L2


p16L1only

Cerqueira et al

p16L1w_revSEAP*

yes

amp

HPV16 L1 expressed from a plasmid that is too be to be packaged.  Alternative name “pUL1reverseSEAP”


pumL1B

Cerqueira et al

pümL1B

yes

blast

HPV16 L1 C428S mutant expression plasmid (puL1B context)


pending

p16LL2-laugh

yes

amp

HPV16 L1 co-expression with 5xHA-tagged L2








HPV18

p18L1-GFP

[4]

phëLsf

yes

zeo

Self-packages in TT-18L2 stable line.  L1-only capsid propagation.


p18L1L2

[4]

phëL?

yes

zeo

Self-packages.  Bulk L1+L2 capsid propagation


peL2bhb

[14]

pëL2BHB

yes

kan



p18L2P

[4]

pë?P

yes

amp

L2 stable expression plasmid used to make TT-18L2 line


peL1fB

unpublished

pëL1fB

yes

blast

Replaced by p18L1-GFP


peL1bhb

[14]

peL1bhb

yes

kan

Replaced by p18L1-GFP








HPV31

ptL1w

[7]

ptLw

yes

kan

HPV31 L1 ORF not codon modified.  Expression is poor.  Replaced by p31sheLL.


ptL2w

[7]

pt?w

yes

kan

HPV31 L2 ORF not codon modified.  Expression is poor.  Replaced by p31sheLL








HPV45

p45L1w

[8] DQ080002 

p45L1w

yes

zeo



p45L2w

[8] DQ080002 

p45L2w

yes

zeo









DNA replication

pTIH

[116]

pTIH

yes

amp

Stable SV40 T antigen expression construct.  Toxic to bacteria – grow at 30ºC or lower


pdTH

unpublished, [17]

pdTH

not yet

amp

Safer T antigen (p53 and pRB binding sites mutated).  Requires Cooper MTA.


pIND-T

[1]

pDT strategy B

yes

amp



pRSV-TEX

[16]

pRSV-TEX

Loeken

amp



pE1

[1]

pE

yes

amp



pE1-E2

[1]

pEARe

yes

amp



pIND-E1-E2

[1]

pDEAe

yes

amp



pIND-E2

[1]

pDAe

yes

amp



pMEP-E2

Alison McBride

pMEP-E2

yes

amp









Gateway

pDONR-221

Invitrogen

pDONR-222

commercial

kan

Gateway cloning system is useful for manipulation of codon-modified genes.


pDONR-222

Invitrogen

pDONR-222

commercial

kan

Gateway cloning system is useful for manipulation of codon-modified genes.

 

pCDNA-6.2-Dest

Invitrogen

pCDNA-6.2-Dest

commercial

amp or blast

Gateway CMV promoter destination plasmid

 

pGwf

[18]

pGwf

yes

zeo

Gateway-adapted destination plasmid using WPRE (Tom Hope)

 

phGf

[18]

phGf

yes

zeo

Gateway-adapted destination plasmid with HTLV R-U5 leader

 

[19]

pFF

yes

zeo

Gateway-adapted entry plasmid - cloning site protected by bacterial transcription terminators








Fluorescent L2

puL2f

[9]

pü?f

yes

kan

L2:GFP fusion protein.  Resulting fluorescent capsids retain good infectivity


p16LLfw

unpublished

p16LLfw

yes

amp

L2:GFP fusion protein in context of p16sheLL.  Resulting fluorescent capsids cannot transduce the L2:GFP gene.


pL2-YFP

[4]

pü?Y

yes

kan

L2:yellow fluorescent protein fusion


pL2-CYFP

[4]

pü?YC

yes

kan

split YFP (bimolecular fluorescence complementation)


pL2-NYFP

[4]

pü?YN

yes

kan

split YFP (bimolecular fluorescence complementation)


pCYFP-L2

[4]

pYCü?

yes

kan

split YFP (bimolecular fluorescence complementation)


pNYFP-L2

[4]

pYNü?

yes

kan

split YFP (bimolecular fluorescence complementation)


puL2t

unpublished

pü?t

yes

kan

L2 fused to tandem dual tomato.   Requires Roger Tsien MTA

 







RCA cloning

pAsylum

[19]

pAsylum

yes

zeo

Cloning plasmid - MCS protected by bacterial transcription terminators

 

Welch et al.

pAsylum++

yes


pAsylum with improved multiple cloning site

 







Polyomavirus

pMslc

[20]

pMSLC

AddGene.org

blast

Stable expression of SLC35A1 (CMP-sialic acid transporter)

 

pMtB

[20]

pMtB

AddGene.org

blast

MCV small t antigen stable expression

 

pMtBS

[20]

pMtBS

AddGene.org

blast

MCV small t antigen with splice donor mutated to avoid unwanted spliced t:blast fusion protein

 

pADL*

[20]

pMono-ADL*

AddGene.org

zeo

MCV Large T Antigen stable expression

 

[20]

pMMt

yes

amp

Bacterial expression of maltose binding protein tagged MCV small t antigen

 

pT+Ori

[21]

pMoHf

not yet

amp

MCV autonomous episome plasmid

 

pCDNA4C-MCVori

[21]

pCDNA4C-MCVori

not yet

zeo or amp

MCV origin of replication

 

pCDNA4C-MCVoriDNI

[21]

pCDNA4C-MCVori

not yet

zeo or amp

MCV origin plus expressed Brd4 fragment

 

pMVP2M

unpublished

pMVP2M

yes

amp

Bacterial expression of MBP-MCV VP2 fusion protein

 

pHisMVP2

unpublished

pHisMVP2

yes

amp

Bacterial expression of His-tagged MCV VP2 protein

 

pC3m

unpublished

pC3m

yes

amp or blast 

Mammalian expression of hypothetical MCV VP3 protein

 

pC2m

unpublished

pC2m

yes

amp or blast

MCV VP2 expression (isogenic with pC3m)

 

pMmw

unpublished

pMmw

yes

amp

Bicistronic MCV VP1-VP2 expression

 

pcC18f

unpublished

pcC18f

yes

amp

Constitutively active murine caspase-3 (death gene)

 

pcM

unpublished

pcC18f

yes

kan

MCV VP1 under control of CMV promoter, small enough to self-package

 

pet2B

unpublished

pe2tB

yes

blast

HPyV7 small T antigen under ferritin promoter. IRES-blasticidin allows stable mammalian expression

 

pMe1t

unpublished

pMe1t

yes

amp

Bacterial expression of HPyV6 small t fused to maltose binding protein

 

pMe2t

unpublished

pMe2t

yes

amp

Bacterial expression of HPyV7 small t fused to maltose binding protein

 

pMBPSV40sT

unpublished

pMBP-SV40sT

not yet

amp

Bacterial expression of SV40 small t fused to maltose binding protein

 

unpublished

pmtw

yes

zeo

High-yield expression of MCV small t.  LT splice donor destroyed.


Yang et al (submitted)pALTOwyeszeoMCV ALTO protein expression construct



1.         Buck, C.B., et al., Efficient intracellular assembly of papillomaviral vectors.J Virol, 2004. 78(2): p. 751-7.

http://www.ncbi.nlm.nih.gov/pubmed/14694107


2.         Buck, C.B., et al., The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site.J Virol, 2001. 75(1): p. 181-91.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11119587


3.         Gambhira, R., et al., A protective and broadly cross-neutralizing epitope of human papillomavirus L2.J Virol, 2007. 81(24): p. 13927-31.


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17928339


4.         Buck, C.B., et al., Arrangement of L2 within the papillomavirus capsid.J Virol, 2008. 82(11): p. 5190-7.


5.         Zhou, J., et al., Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability.J Virol, 1999. 73(6): p. 4972-82.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10233959


6.         Day, P.M., et al., Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression.Proc Natl Acad Sci U S A, 2004. 101(39): p. 14252-7.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15383670


7.         Pastrana, D.V., et al., Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2.Virology, 2005. 337(2): p. 365-72.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15885736


8.         Buck, C.B., et al., Carrageenan is a potent inhibitor of papillomavirus infection.PLoS Pathog, 2006. 2(7): p. e69.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16839203


9.         Buck, C.B., et al., Human alpha-defensins block papillomavirus infection.Proc Natl Acad Sci U S A, 2006. 103(5): p. 1516-21.

http://www.ncbi.nlm.nih.gov/pubmed/16432216


10.       Buck, C.B., et al., Maturation of papillomavirus capsids.J Virol, 2005. 79(5): p. 2839-46.

http://www.ncbi.nlm.nih.gov/pubmed/15709003


11.       Leder, C., et al., Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes.J Virol, 2001. 75(19): p. 9201-9.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11533183


12.       Pyeon, D., P.F. Lambert, and P. Ahlquist, Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation.Proc Natl Acad Sci U S A, 2005. 102(26): p. 9311-6.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15958530


13.       Okuley, S., et al., Relationship among location of T-antigen-induced DNA distortion, auxiliary sequences, and DNA replication efficiency.J Virol, 2003. 77(19): p. 10651-7.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12970450


14.       Pastrana, D.V., et al., Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18.Virology, 2004. 321(2): p. 205-16.

http://www.ncbi.nlm.nih.gov/pubmed/15051381


15.       Trus, B.L., et al., Maturation of the human papillomavirus type 16 capsid.manuscript  in preparation.


16.       Loeken, M., et al., trans-activation of RNA polymerase II and III promoters by SV40 small t antigen.Cell, 1988.55(6): p. 1171-7.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3203384


17.       Cooper, M.J., et al., Safety-modified episomal vectors for human gene therapy.Proc Natl Acad Sci U S A, 1997. 94(12): p. 6450-5.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9177238


18.       Pastrana, D.V., et al., Quantitation of human seroresponsiveness to Merkel cell polyomavirus.PLoS Pathog, 2009.5(9): p. e1000578.

http://www.ncbi.nlm.nih.gov/pubmed/19750217


19.       Schowalter, R.M., et al., Merkel Cell Polyomavirus and Two Previously Unknown Polyomaviruses Are Chronically Shed From Human Skin.Cell Host Microbe, 2010. 7(6): p. 509-15.

http://www.ncbi.nlm.nih.gov/pubmed/20542254


20.       Schowalter, R.M., D.V. Pastrana, and C.B. Buck, Glycosaminoglycans and sialylated glycans sequentially facilitate merkel cell polyomavirus infectious entry.PLoS Pathog, 2011. 7(7): p. e1002161.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21829355


21.       Wang, X., et al., Bromodomain protein Brd4 plays a key role in Merkel cell polyomavirus DNA replication.PLoS Pathog, 2012. 8(11): p. e1003021.

http://www.ncbi.nlm.nih.gov/pubmed/23144621







Last updated by Buck, Christopher (NIH/NCI) [E] on Jul 03, 2024