Click here to return to main plasmids page

 

 

 

 

 

 

 

 

Paper Name

Reference

Lab Name

Distribute?

Resistance

Notes

GFP

[1]

pCIneoEGFP

AddGene.org

amp

GFP in Promega pCIneo (uses CMV promoter).  Superior to pfwB for some purposes

 

pCDNA3-GFP

[1]

pCDNAf

yes

amp

GFP in Invitrogen pCDNA3.1

 

pfwB

[2]

pfwB

AddGene.org

blast or zeo

GFP under control of EF1alpha promoter.  Titer yield somewhat better than pYafw.  No PV sequences.

 

p8fwB

[3]

p8fwB

yes

blast or zeo

8 kb.  IFN-ß SAR stuffer DNA is compatible with packaging

 

pEGFP-N1

 

pEGFP-N1

Clontech

kan

Small enough to package in polyomavirus-based reporter vectors

 

pYafw

[4-6]

pYafw

yes

blast

GFP under control of EF1alpha promoter.  Small enough for PyVs

 

 

 

 

 

 

 

RFP

p8RwB

[7]

p8RwB

yes

blast or zeo

dsRed-Express (Clontech) 8kb plasmid

 

pRwB

[8]

pRwB

yes

blast or zeo

dsRed-Express (Clontech).  Smaller (5.8kb) variant of p8RwB.

 

ptwB

[79]

ptwB

yes, Tsien MTA

blast or zeo

tandem dual tomato.   Requires Roger Tsien MTA

 

pCIR

[10]

pCIR

yes

amp

dsRed-Express in pCIneo

 

 

 

 

 

 

 

SEAP

pYSEAP

[11]

pYSEAP

AddGene.org

blast

 

 

 

 

 

 

 

 

Luciferase

pCLucf

[8]

pCLucf

AddGene.org

amp

Firefly Luciferase under control of CMV promoter.  Also encodes GFP under control of SV40 promoter.

 

phGluc

[12]

phGluc

no*

zeo

Gaussia luciferase (secreted) under control of EF1alpha promoter.  Suitable size for polyomavirus-based vectors

 

[6]

pCGluc

no*

zeo

Gaussia luciferase (secreted) under control of CMV promoter.  Suitable size for polyomavirus-based vectors

 

[13]

phsNuc

ask

zeo

NanoLuc expression under control of EF1α promoter. Packageable.

 

[13]

pcsNuc

ask

kan

NanoLuc expression under control of CMV promoter. Packageable.

 

[13]

pH2BN

ask

zeo

Histone H2B fused to NanoLuc – used to produce NanoLuc VLPs

 

 

 

 

 

 

 

CD4

[14]

pNaMB

yes

blast

This plasmid encodes tailless human CD4 (Miltenyi)  

 

 

 

 

 

 

 

Vaccine

Antigen

pCMMf

[10]

pCMMf

yes

amp

RSV M-M2 fusion protein expression plasmid for vaccine studies.  SV40-GFP cassette in backbone for titering

 

[15]

pCRSVF(a)cmF (mod)

yes

amp

RSV F protein expression plasmid for vaccine studies.  SV40-GFP cassette in backbone for titering

.

*This plasmid contains a Gaussia luciferase gene licensed through purchase of pCMV-GLucfrom NEB.  The license prevents us from distributing phGluc.  

In our hands, Promega’s new NanoLuc reporter has proven to be superior to Gaussia luciferase for many applications.

 

1.         Buck, C.B. and C.D. Thompson, Production of papillomavirus-based gene transfer vectors.Curr Protoc Cell Biol, 2007. Chapter 26: p. Unit 26.1.

2.         Buck, C.B., et al., Maturation of papillomavirus capsids.J Virol, 2005. 79(5): p. 2839-46.

3.         Buck, C.B., et al., Human alpha-defensins block papillomavirus infection.Proc Natl Acad Sci U S A, 2006. 103(5): p. 1516-21.

4.         Buck, C.B., et al., Efficient intracellular assembly of papillomaviral vectors.J Virol, 2004. 78(2): p. 751-7.

5.         Schowalter, R.M., W.C. Reinhold, and C.B. Buck, Entry tropism of BK and Merkel Cell Polyomaviruses in cell culture.PLoS One, 2012. 7(7): p. e42181.

6.         Schowalter, R.M. and C.B. Buck, The Merkel cell polyomavirus minor capsid protein.PLoS Pathog, 2013. 9(8): p. e1003558.

7.         Roberts, J.N., et al., Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan.Nat Med, 2007. 13(7): p. 857-61.

8.         Johnson, K.M., et al., Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus.J Virol, 2009. 83(5): p. 2067-74.

9.         Shaner, N.C., et al., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein.Nat Biotechnol, 2004. 22(12): p. 1567-72.

10.       Graham, B.S., et al., Mucosal delivery of human papillomavirus pseudovirus-encapsidated plasmids improves the potency of DNA vaccination.Mucosal Immunol, 2010. 3(5): p. 475-86.

11.       Pastrana, D.V., et al., Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18.Virology, 2004. 321(2): p. 205-16.

12.       Pastrana, D.V., et al., Quantitation of human seroresponsiveness to Merkel cell polyomavirus.PLoS Pathog, 2009.5(9): p. e1000578.

13.       Geoghegan, E.M., et al., Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses.Cell Rep, 2017. 21(5): p. 1169-1179.

14.       Handisurya, A., et al., Murine skin and vaginal mucosa are similarly susceptible to infection by pseudovirions of different papillomavirus classifications and species.Virology, 2012. 433(2): p. 385-94.

15.       Kines, R.C., et al., Vaccination with human papillomavirus pseudovirus-encapsidated plasmids targeted to skin using microneedles.PLoS One, 2015. 10(3): p. e0120797.