Members

All Members:

To view a list of ALL MEMBERS, click here.

Steering Committee:

Laufey Amundadottir, Ph.D.

Dr. Amundadottir's current work focuses on genome wide association studies and functional characterization of plausible causal variants in order to understand how common sequence variation plays a role in the development of cancer.

Mary Carrington, Ph.D.

Dr. Carrington studies host genetic effects on human disease. Her research focuses on the human HLA class I and II genes located within the human major histocompatibility complex (MHC) because the HLA genes play a central role in the immune response. Dr. Carrington's lab is investigating the effects of HLA genes in several types of diseases, including infectious diseases, autoimmune diseases, and cancer.

Stephen Chanock, M.D.

Dr. Chanock investigates the contribution of germ-line genetic variation to cancer and its related outcomes. Currently, he is co-leading the NCI Cancer Genetic Markers of Susceptibility (CGEMS) project, which will identify the genetic alterations that make people susceptible to prostate and breast cancer.

Sean Davis, M.D., Ph.D.

Scott Durum, Ph.D.

Dr. Durum studies various aspects of cytokine function in T cell development. Currently, he is focusing on interleukin-7 (IL-7) because this cytokine is required for normal T cell development in the thymus, and for T cell survival and homeostatic proliferation of mature peripheral T cells.

Mark Gilbert, M.D.

Dr. Gilbert's research interests center on developing new treatment strategies for patients with malignant primary brain tumors.

David Goldstein, Ph.D.

Dr. Goldstein directs CCR's Office of Science & Technology Partnerships. This office is responsible for introducing new technologies and scientific resources to NCI intramural investigators through partnerships, collaborations, contracts, and other technology transfer agreements.

Frank Gonzalez, Ph.D.

Dr. Gonzalez studies the role of cytochromes P450 (P450) and xenobiotic receptors in drug metabolism and chemical carcinogenesis. The P450 enzymes are among the most important enzymes involved in the metabolism of most therapeutic drugs, toxicants, and carcinogens.

Curtis Harris, M.D.

Dr. Harris's scientific interests span the molecular genetics of human cancer to the molecular epidemiology of cancer risk. His research focuses on gene-environment interaction and its effect on lung and colon cancer. Dr. Harris' s other interests include molecular mechanisms of cellular senescence in normal human cells and chronic inflammation and increased cancer risk.

Javed Khan, M.D.

Dr. Khan's chief research goals are to leverage the power of genome wide high-throughput approaches to improve the outcome of patients with high risk cancers, with a focus on neuroblastoma and to translate this to the clinic. His lab utilizes microarrays and novel genomics strategies such as next generation sequencing combined with computational biology to identify biomarkers for diagnosis and prognosis prediction as well as targets for therapy. See http://home.ccr.cancer.gov/oncology/oncogenomics/ for details.

Amy LeBlanc, D.V.M.

Dr. LeBlanc has a strong interest in animal modeling for development of new cancer drugs and imaging agents, and identification of imaging biomarkers, development and optimization of PET imaging hardware and imaging protocols. She has experience in fostering collaborations with industry and academic partners to support relevant eIND studies in man. She has given numerous invited lectures on the inclusion of companion animals in imaging-based translational research and the value of comparative oncology in drug and imaging agent development.

Marston Linehan, M.D.

Dr. Linehan's scientific interests span the molecular genetics of urologic malignancies to the evaluation and treatment of patients with hereditary and sporadic forms of genitourinary cancers. His current studies are aimed at characterizing the von Hippel-Lindau (VHL) tumor suppressor gene product and the c-Met oncogene, which is involved in hereditary papillary renal cell carcinoma.
Paul Meltzer, M.D., Ph.D.

Dr. Meltzer's research interests are focused on the characterization of genetic alterations in cancer cells, the mechanisms that lead to their development and their effects on gene expression. To address these issues, Dr. Meltzer and colleagues utilize several genomic technologies, especially DNA microarray hybridization.

Beverly Mock, Ph.D.

Dr. Mock's research focuses on the complex genetic traits associated with cancer development. She combines classical and molecular genetic studies to map, isolate, and characterize disease-trait loci associated with multistep models of B cell tumors. To this end, Dr. Mock's lab is mapping the chromosomal locations of genes associated with the susceptibility of BALB/c mice to the induction of mouse plasmacytomas.

Karlyne Reilly, Ph.D.

Dr. Reilly's current research focuses on mechanisms of susceptibility to nervous system tumors and preclinical models of tumors associated with neurofibromatosis type 1 (NF1).

Thomas Ried, M.D. (Head)

Dr. Ried investigates the role of genomic instability and associated gene expression changes during cancer development. He is analyzing aneuploidy as a molecular marker for cancer diagnostics and identifying gene expression signatures that assist in disease prognosis and therapy.

Richard Simon, D.Sc

Dr. Simon's current research interests include Bayesian methods in clinical trial design and analysis, and the development of methods for the analysis of genome sequence and expression data to identify cancer-related genes, elucidate their functions, determine the steps of tumor development, identify molecular targets and develop genome-based approaches to the prevention, detection, diagnosis and treatment of cancer.

Louis Staudt, M.D., Ph.D.

Dr. Staudt's laboratory studies the molecular pathogenesis of human lymphoid malignancies. Their goals are to: establish a new molecular diagnosis of lymphoid malignancies using gene expression profiling, elucidate the oncogenic pathways that result in malignant transformation of normal B lymphocytes, and identify molecular targets that could be used to develop new therapeutics for these cancers.

Philip Taylor, M.D., Sc.D.

Dr. Taylor develops prevention strategies for cancers of the upper gastrointestinal tract (esophageal and gastric cancers) using a variety of research approaches (cancer prevention trials, early detection studies, etiologic studies, laboratory-based molecular research, and clinical nutrition studies).

Snorri Thorgeirsson, M.D., Ph.D.

Dr. Thorgeirsson's research interests center on the application of genome scale genomics in studies on molecular pathogenesis, classification and experimental treatment of human liver cancer; use of transgenic mouse models for liver cancer; and stem cell biology with emphasis on cancer stem cells in primary liver cancer.

Margaret Tucker, M.D.

Dr. Tucker studies predictors of high cancer risk among populations with specific genetic alterations or families with high rate of cancers. She is also interested in the integration of clinical, epidemiologic, and molecular research.

Xin Wei Wang, Ph.D.

Dr. Wang is exploring the molecular mechanisms related to gastroenterological malignancies, including liver cancer, metastatic gastric cancer, and colorectal cancer to determine the molecular events that are critical for tumor initiation and progression. Using human hepatocellular carcinoma (HCC) as a model system, Dr. Wang's lab plans to learn how cancer cells initiate and metastasize, identify biomarkers that are useful for early diagnosis, and identify molecular targets for effective therapeutic intervention.

Brigitte Widemann, M.D.

Dr. Widemann and her colleagues have developed novel imaging methods for NF1-related plexiform neurofibromas and pioneered the development of early phase drug treatments for this patient population. Dr. Widemann leads multiple clinical trials of new investigational agents in pediatric refractory cancers and NF1.

Stuart Yuspa, M.D.

Dr. Yuspa's research interests include carcinogenesis and epithelial differentiation. His studies are aimed at elucidating the genetic changes associated with the development of squamous cell carcinoma using a mouse model of skin carcinogenesis.