

Agenda

- Types of clinical trials
- Clinical Trial design general principles and terminology
- Phase I III clinical trial designs

Prevention Trials

- Evaluate better ways to prevent disease in people who have never had the disease or to prevent a disease from returning
 - Evaluate the effectiveness of ways to reduce the risk of cancer
 - Enroll healthy people at high risk for developing cancer
- 2 types of trials:
 - Action studies "do something"
 - · Agent studies "take something"

Screening Trials

- Test the best way to detect certain diseases or health conditions
 - Assess new means of detecting cancer earlier in asymptomatic people
- · Tools:
 - Tissue sampling/procurement
 - · Laboratory tests, including genetic testing
 - Imaging tests
 - · Physical exams
 - · History, including family hx (pedigree)

Diagnostic Trials

- Discover better tests or procedures for diagnosing a particular disease or condition
 - Develop better tests or procedures to identify a suspected cancer earlier or more accurately
- Tools:
 - · Imaging tests
 - Laboratory correlative studies/tumor marker

Imaging Trials

- Scientific question being asked is aimed at understanding if or how a specific imaging test can best be used to:
 - Screen
 - Diagnose
 - · Direct the treatment of a disease
 - Monitor the response to a therapy for a disease

Supportive Care/QOL Trials

- Explore ways to improve comfort and the quality of life for individuals with a chronic illness
 - Evaluate improvements in comfort of and quality of life (QOL) for people who have cancer
 - Seek better therapies or psychosocial interventions for subjects
- Focus on subjects AND families or caregivers

"Treatment" Clinical Trials

- Test:
 - New intervention
 - New combination of drugs
 Approved + investigational
 - Investigational + investigational
 - New approaches to:
 - Surgery
 - Radiation therapy
 - New approaches to combination therapies

Study Design: Selected Considerations

- Randomization
- Stratification
- Control Group
- Superiority, equivalence, or non-inferiority
- Mask/blind
- Number of Arms
- Number of
- Stages

 Endpoints
- Single vs. Multi-Center
- Phase

Randomized Controlled CT

- Compare outcomes of trial group and control group following an intervention
- Most powerful tool to assess efficacy
- Controlled, randomized, double-blind trials are the "Gold Standard" in clinical research
- Simple or Complex using software programs

Randomization

Advantages

- Difference is <u>because</u> of the intervention
- Minimizes investigator
 bias
- Allows stratification within treatment groups

Disadvantages

- Results not always generalizable
- Recruitment
- Acceptability of Randomization Process
- Administrative
 Complexity

Randomization: Other Considerations

- Intent-to-treat analysis may be used
 - Compares participants in the groups they were originally randomized to whether they completed intervention or not
- Data Safety Monitoring Board (DSMB) for interim analysis

...Stratification

Advantages

- Offers most precision of treatment effect by keeping variability:
 - Within strata as small as possible
 - Between-strata as large as possible
- Avoid imbalance in the distribution of treatment groups within strata
- Protect against Type I and Type II errors

Disadvantages

- Gains (power/efficiency) that can occur with stratification is often small, particularly once (# subjects) / (# treatments) > 50
- More costly
 More complicated trial
 Greater opportunity to
 - introduce randomization error

Stratification after Randomization

- · Easier and less costly to implement
- Often nearly as efficient
- May be less convincing
- Cannot correct for cases of extreme imbalance or confounding of covariates

Control Group

- Group of research participants who do not receive the treatment being studied
- Distinguishes treatment outcomes from outcomes caused by other factors:
 - · Natural progression of disease
 - · Observer/patient expectations
 - · Other treatment

Choosing a Control Group

- Standard therapies are available for the study population
- · Goal of the study
- · Significance of the control group
- · Ethical considerations

Types of Controls

- External control
 - <u>Historical control</u>
- Concurrent Controls
 - Placebo control
 - No treatment control
 - Dose-response control
 - Active Control
 - · Same time period another setting

Taken from: ICH HARMONISED TRIPARTITE GUIDELINE:CHOICE OF CONTROL GROUP AND RELATED ISSUES IN CLINICAL TRIALS, E10

Historical Control

- Control group was treated at different time
 Outcome compared with previous series of
 - comparable subjects
- Non-randomized
- Rapid, inexpensive, good for initial testing of new intervention
- · Vulnerable to biases:
 - · Different underlying populations
 - Criteria for selecting patients
 - Patient care
 - · Diagnostic or evaluating criteria

Placebo Control

- · Used as a control treatment
- Includes:
 - · Inactive or sham treatment
 - Best standard of care if "placebo" unethical
- · May need matched placebo controls
 - Patients and investigators cannot decode the treatment

Active Control

- Investigational drug is compared with a known active drug
- Often used for life-threatening or debilitating disease and/or an effective therapy already exists
- Need to determine if study outcome is to show a difference between the treatments or not

Superiority vs. Non-Inferiority

Superiority Design

- Demonstrates that new treatment is superior to the control than the control or standard
- Type of controls
 No treatment
 - Best standard of care

Non-inferiority Design

- Demonstrates that the new treatment is similar in efficacy to a known effective treatment
- Types of controls
 - Most active control
- Some historical

Masking/Blinding

- Minimize potential investigator and subject bias
- Most useful when there is a *subjective* component to treatment or evaluation
- Assures that subjects are similar with regard to post-treatment variables that could affect outcomes
- May be only way to obtain an objective answer to a clinical question

Feasibility of Masking

- Ethical
 - Should not result in any harm or undue risk
- Practical
 - May be impossible to mask some treatments
- Compromise
 - Sometimes partial masking can be sufficient to reduce bias (e.g., radiologist)

Types of Masking/Blinding

- · Single Blind
 - · Patient does not know treatment
- Double Blind*
 - Neither patient nor health care provider know treatment
- Triple Blind
 - Patient, physician and statistician/monitors

Adaptive Design

- Use of accumulated data to decide how to modify aspects of the ongoing study without effecting validity and integrity of trial
- FDA Draft Guidance Document 2010
 - Adaptive Design Clinical Trials for Drugs and Biologics
 - Prospectively planned modification of one or more aspects of the study design and hypotheses based on analysis of data (usually interim data)

Study Arms & Stages

- Arms (# of groups/interventions)
 - Single Arm
 - Compare change from baseline
 - · Two or more arms
 - · Compare outcomes in the different groups
- Stages
 - One-stage
 - Multi-stage

One-stage Design

- Used when time-dependent endpoints are considered
- Early stopping rules usually incorporated for:
 - Lack of efficacy
- Unacceptable toxicity
- · Need good historical control data

Multi-Stage Designs

- Frequentist
 - · Gehan 2-Stage
 - Simon 2-Stage Optimal
 - Simon 2-Stage Minimax
 - Fleming 1-stage
 - Gehan-Simon 3-Stage
 - Randomized Phase 2
 - Constant Arc-Sine
 Multi
 - Randomized Discontinuation

- Bayesian
 - Thall-Simon-Estey
 - 1-Stage Bayesian
 - 2-Stage Bayesian
 Tan Machin
 - Heitjan
- Adaptive
- Multiple Outcomes

Endpoints

- Primary
- · Secondary
- Direct
- Surrogate

Primary & Secondary Endpoints

- Primary
 - · Most important, central question
 - Ideally, only one
 - Stated in advance
 - · Basis for design and sample size
- <u>Secondary</u>
 - · Related to primary
 - Stated in advance
 - · Limited in number

"Direct" Endpoints

- Clinically meaningful endpoints that directly measure how subject:
 - Feels
 - · Functions, or
 - Survives
- Endpoints that characterize the clinical outcome
 of interest
 - Objective: survival, disease exacerbation, clinical event
 - Subjective: symptom score, "health related quality of life"
- · Customarily, the basis for approval of new drugs

Surrogate Endpoints

- Endpoints used as alternative to desired or ideal clinical response to save time and/or resources
- · Surrogate for clinical benefit
 - Laboratory measure or a physical sign intended used as substitute for a direct endpoint
- Surrogate endpoints can be used for drug approval:
 - if well validated, or
 - under Subpart H: "accelerated approval" for serious and life-threatening illnesses; 1992

Examples of Surrogates

Surrogate	Condition/Disease
arterial blood pressure	CVA, MI, heart failure
Cholesterol and triglyceride levels	atherosclerotic disease
Increased IOP	Loss of Vision
Blood sugar	Survival/complications of DM
Disease-free survival; time to progression; progression free survival	Cancer survival

Surrogate Endpoints: Potential Pitfalls

- Unless validated, relationship between surrogate
 and direct benefit may not be causal
- · True risk:benefit ratio may not be clear
- Drugs may have other unfavorable effects, apart from effect on surrogate
- Use of validated surrogate for study of drugs with different mechanisms of action
- Surrogate creep

Phase I Goals

- · Determine dosing in humans
- · Assess safety
- Evaluate PKs and PDs
- Explore drug metabolism and drug interactions

Phase I Additional Goal(s)

- · Also used to:
 - Evaluate new treatment schedule
 - · Evaluate new drug combination strategy
 - Evaluate new multi-modality regimen

May provide early evidence of response, but *NOT* primary aim

Phase I Subjects

General

- Healthy volunteers
- Patients
- Used when drug is known or expected to be toxic; cytotoxic agents, biological agents
- Special populations (elderly, renal impairment)
- Small numbers
 - 15 30
 <100

- Cancer Specific

 Usually many cancer
- types (e.g. solid tumors)Refractory to standard
- therapy
- No remaining standard therapy
- Adequate organ function
- Adequate performance status

Phase I Standard Design

- · Open label, non-randomized, dose escalation
- Low starting dose
 - 1/10th the lethal dose (LD10) in the most sensitive species tested = dose at which 10% of the animals die
 - Unlikely to cause serious toxicity
 - Pediatric dose starts at 80% of adult MTD
- · 3-6 patients per cohort
- Increase dose gradually
 - Most common scheme is a Modified Fibonacci

Classic Modified Fibonacci Dose Escalation Scheme

% Increase Above Preceding Dose:

Level 1: Starting dose Level 2: 100% increase from Level 1 Level 3: 67% increase from Level 2 Level 4: 50% increase from Level 3 Level 5: 40% increase from Level 4

Levels 6+: 33% increase from Level 5+

Alternate Designs

Accelerated design

1 subject enrolled per DL until grade 2 toxicity then return to the 3 + 3 design

<u>OBD</u>

- Find dose that is considered to safe and have optimal biologic effect (OBD)
- Optimize "biomarker" response within safety constraints

Intrapatient Dose Escalation

- Once a DL has been proven "safe" then subjects at lower levels are able to escalate to the "safe" level
 Subject used as own control and can
 - escalated to higher DL if lower level tolerated

Phase I Endpoints

- Dose Limiting Toxicity (DLT)
 - General DLT Criteria:
 - ≥ Grade 3 non-heme toxicity
 Grade 4 neutropenia lasting longer than 5 days
 - Grade 4 thrombocytopenia
 - Typically the DLT is defined for the first course/cycle
- Maximum Tolerated Dose (MTD)
- Highest dose level at which ≤1/6 patients develop a DLT

Phase I Limitations

- · Questionable risks without benefits
- Initial patients may be treated at low (subtherapeutic) doses
- Slow to complete trial (need to find fairly healthy advanced cancer patients)
- Toxicity may be influenced by extensive prior therapy
- · Inter-patient variability
- · MTD definition is imprecise
- Minimal data about cumulative toxicity since only the first cycle/course is taken into consideration for a DLT

Phase II Goals

- Provide initial assessment of efficacy or 'clinical activity'
 - Screen out ineffective drugs
 - Identify promising new drugs for further evaluation
- · Further define safety and toxicity

Phase II Subjects

- ~100 subjects (100-300)
- More homogenous population that is deemed likely to respond based on:
 - phase I data
 - pre-clinical models, and/or
 - mechanisms of action
- · Subject needs to have measurable disease
- · May limit number of prior treatments

Phase 2 Designs

- Most common
 - 2 stage design w/ early stopping rule
- · Randomized designs
 - · Want to explore efficacy
 - Not willing to invest in phase III (yet)
 - Want some "control" or "prioritization"

Phase II Endpoints

- Response
 - Complete Response (CR)
 - Partial Response (PR)
 - Stable Disease (SD)
- Progressive Disease (PD)
- Additional safety data

Phase II Limitations

- · Lack of activity may not be valid
- · Measurable disease required

Phase III Goals

- Efficacy compared to standard therapy
 - · Activity demonstrated in Phase II study
- · Further evaluation of safety

Phase III Subjects

- · Hundreds to thousands of subjects
- · Single cancer type
- May be front-line therapy
- Well-defined eligibility criteria
- · Internal control group
- Multi-institutional participation necessary to reach targeted accrual goals

Phase III Standard Design

• Randomized +/- blinding/masking

Phase III: Endpoints

- Efficacy
 - Overall survival
 - Disease-free survival
 - Progression-free survivalSymptom control
 - Quality of life

Phase III: Limitations

- · Difficult, complex, expensive to conduct
- · Large number of patients required
- Incorporation of results into front-line therapy in community is often slow and incomplete

FDA Cancer Approval Endpoints

- Overall survival
- · Endpoints based on tumor assessments
- Symptom endpoints (PROs)
- FDA Guidance: <u>Clinical Trial Endpoints</u> for the Approval of Cancer Drugs and <u>Biologics</u>

Overall Survival

- · Time from randomization until death
- Intent-to-treat population

Endpoints: Tumor Assessments...

• Disease-free survival

- Randomization until recurrence of tumor or death from any cause
- Adjuvant setting after definitive surgery or radiotherapy
- Large % of patients achieve CR after chemo
- Objective response rate (ORR)
 - Proportion of patients with reduction of tumor size of a predefine amount and for a minimum time period
 - Measure from time of initial response until progression
 - Sum of PRs + CRs
 - · Use standardized criteria when possible

... Endpoints: Tumor Assessments

Progression free survival (PFS)

- Randomization until objective tumor progression or death
- Preferred regulatory endpoint
- Assumes deaths are r/t progression
- <u>Time to Progression (TTP)</u>
 - Randomization until objective tumor progression, excluding deaths
- <u>Time-to-treatment failure (TTF)</u>
 - Randomization to discontinuation of treatment for any reason (PD, toxicity, death, etc.)
 - Not recommended for regulatory drug approval

Endpoints: Symptom Assessment

- · Time to progression of cancer symptoms
- FDA Guidance: <u>Patient-Reported Outcome</u> <u>Measures: Use in Medical Product</u> <u>Development to Support Labeling Claims</u>
- Tools/surveys
- Issues:
 - Missing dataInfrequent assessments

Questions