Clinical Trial Design

Elizabeth Ness, RN, MS
Nurse Consultant (Education)
Center for Cancer Research, NCI

Agenda

• Types of clinical trials
• Clinical Trial design general principles and terminology
• Phase I – III clinical trial designs

Types of Clinical Trials

Prevention Trials

• Evaluate better ways to prevent disease in people who have never had the disease or to prevent a disease from returning
• Evaluate the effectiveness of ways to reduce the risk of cancer
• Enroll healthy people at high risk for developing cancer
• 2 types of trials:
 • Action studies – “do something”
 • Agent studies – “take something”

Screening Trials

• Test the best way to detect certain diseases or health conditions
• Assess new means of detecting cancer earlier in asymptomatic people
• Tools:
 • Tissue sampling/procurement
 • Laboratory tests, including genetic testing
 • Imaging tests
 • Physical exams
 • History, including family hx (pedigree)

Diagnostic Trials

• Discover better tests or procedures for diagnosing a particular disease or condition
• Develop better tests or procedures to identify a suspected cancer earlier or more accurately
• Tools:
 • Imaging tests
 • Laboratory correlative studies/tumor marker
Imaging Trials
- Scientific question being asked is aimed at understanding if or how a specific imaging test can best be used to:
 - Screen
 - Diagnose
 - Direct the treatment of a disease
 - Monitor the response to a therapy for a disease

Supportive Care/QOL Trials
- Explore ways to improve comfort and the quality of life for individuals with a chronic illness
- Evaluate improvements in comfort of and quality of life (QOL) for people who have cancer
- Seek better therapies or psychosocial interventions for subjects
- Focus on subjects AND families or caregivers

“Treatment” Clinical Trials
- Test:
 - New intervention
 - New combination of drugs
 - Approved + investigational
 - Investigational + investigational
 - New approaches to:
 - Surgery
 - Radiation therapy
 - New approaches to combination therapies

Study Design: Selected Considerations
- Randomization
- Stratification
- Control Group
- Superiority, equivalence, or non-inferiority
- Mask/blind
- Number of Arms
- Number of Stages
- Endpoints
- Single vs. Multi-Center
- Phase

Randomized Controlled CT
- Compare outcomes of trial group and control group following an intervention
- Most powerful tool to assess efficacy
- Controlled, randomized, double-blind trials are the “Gold Standard” in clinical research
- Simple or Complex using software programs

Randomization

Advantages
- Difference is *because* of the intervention
- Minimizes investigator bias
- Allows stratification within treatment groups

Disadvantages
- Results not always generalizable
- Recruitment
- Acceptability of Randomization Process
- Administrative Complexity
Randomization: Other Considerations

- Intent-to-treat analysis may be used
- Compares participants in the groups they were originally randomized to whether they completed intervention or not
- Data Safety Monitoring Board (DSMB) for interim analysis

Parallel Design...

...Parallel Design

Low dose vs. higher dose
Randomization (n=50)
25 New Agent/ Intervention
Low Dose 25 New Agent/ Intervention
Higher Dose
Placebo (Inactive) vs agent
Randomization (n=50)
25 New agent alone or + placebo 25 New agent + standard of care

Crossover Design

Randomized Discontinuation Design

Stratification...

- Partitioning subjects by factor other than the treatment
- Examples of stratification factors include:
 - Demography: gender, age
 - Disease severity, risk factors
 - Prior treatments
 - Concomitant illness

* Patients with progressive disease on placebo can switch back to active agent.
...Stratification

Advantages
- Offers most precision of treatment effect by keeping variability:
 - Within strata as small as possible
 - Between-strata as large as possible
- Avoid imbalance in the distribution of treatment groups within strata
- Protect against Type I and Type II errors

Disadvantages
- Gains (power/efficiency) that can occur with stratification is often small, particularly once (# subjects) / (# treatments) > 50
- More costly
- More complicated trial
 - Greater opportunity to introduce randomization error

Stratification after Randomization

- Easier and less costly to implement
 - Often nearly as efficient
 - May be less convincing
 - Cannot correct for cases of extreme imbalance or confounding of covariates

Control Group

- Group of research participants who do not receive the treatment being studied

- Distinguishes treatment outcomes from outcomes caused by other factors:
 - Natural progression of disease
 - Observer/patient expectations
 - Other treatment

Choosing a Control Group

- Standard therapies are available for the study population

- Goal of the study

- Significance of the control group

- Ethical considerations

Types of Controls

- External control
 - Historical control

- Concurrent Controls
 - Placebo control
 - No treatment control
 - Dose-response control
 - Active Control
 - Same time period another setting

Historical Control

- Control group was treated at different time
 - Outcome compared with previous series of comparable subjects

- Non-randomized

- Rapid, inexpensive, good for initial testing of new intervention

- Vulnerable to biases:
 - Different underlying populations
 - Criteria for selecting patients
 - Patient care
 - Diagnostic or evaluating criteria

Taken from: ICH HARMONISED TRIPARTITE GUIDELINE: CHOICE OF CONTROL GROUP AND RELATED ISSUES IN CLINICAL TRIALS, E10
Placebo Control
- Used as a control treatment
- Includes:
 - Inactive or sham treatment
 - Best standard of care if “placebo” unethical
- May need matched placebo controls
 - Patients and investigators cannot decode the treatment

Active Control
- Investigational drug is compared with a known active drug
- Often used for life-threatening or debilitating disease and/or an effective therapy already exists
- Need to determine if study outcome is to show a difference between the treatments or not

Superiority vs. Non-Inferiority

<table>
<thead>
<tr>
<th>Superiority Design</th>
<th>Non-inferiority Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrates that new treatment is superior to the control than the control or standard</td>
<td>Demonstrates that the new treatment is similar in efficacy to a known effective treatment</td>
</tr>
<tr>
<td>Type of controls</td>
<td>Types of controls</td>
</tr>
<tr>
<td>No treatment</td>
<td>Most active control</td>
</tr>
<tr>
<td>Best standard of care</td>
<td>Some historical</td>
</tr>
</tbody>
</table>

Masking/Blinding
- Minimize potential investigator and subject bias
- Most useful when there is a subjective component to treatment or evaluation
- Assures that subjects are similar with regard to post-treatment variables that could affect outcomes
- May be only way to obtain an objective answer to a clinical question

Feasibility of Masking
- Ethical
 - Should not result in any harm or undue risk
- Practical
 - May be impossible to mask some treatments
- Compromise
 - Sometimes partial masking can be sufficient to reduce bias (e.g., radiologist)

Types of Masking/Blinding
- Single Blind
 - Patient does not know treatment
- Double Blind*
 - Neither patient nor health care provider know treatment
- Triple Blind
 - Patient, physician and statistician/monitors do not know treatment

*Double Blind recommended when possible
Adaptive Design

- Use of accumulated data to decide how to modify aspects of the ongoing study without effecting validity and integrity of trial
- FDA Draft Guidance Document 2010
 - Adaptive Design Clinical Trials for Drugs and Biologics
 - Prospectively planned modification of one or more aspects of the study design and hypotheses based on analysis of data (usually interim data)

Study Arms & Stages

- Arms (# of groups/interventions)
 - Single Arm
 - Compare change from baseline
 - Two or more arms
 - Compare outcomes in the different groups
- Stages
 - One-stage
 - Multi-stage

One-stage Design

- Used when time-dependent endpoints are considered
- Early stopping rules usually incorporated for:
 - Lack of efficacy
 - Unacceptable toxicity
 - Need good historical control data

Multi-Stage Designs

- Frequentist
 - Gehan 2-Stage
 - Simon 2-Stage Optimal
 - Simon 2-Stage Minimax
 - Fleming 1-stage
 - Gehan-Simon 3-Stage
 - Randomized Phase 2
 - Constant Arc-Sine
 - Randomized Discontinuation
- Bayesian
 - Thall-Simon-Estey
 - 1-Stage Bayesian
 - 2-Stage Bayesian
 - Tan Machin
 - Heitjan
 - Adaptive
 - Multiple Outcomes

Standard 2 Stage Design

Two-stage design with early stopping rule for efficacy or futility
Endpoints

• Primary
• Secondary
• Direct
• Surrogate

Primary & Secondary Endpoints

• Primary
 • Most important, central question
 • Ideally, only one
 • Stated in advance
 • Basis for design and sample size
• Secondary
 • Related to primary
 • Stated in advance
 • Limited in number

“Direct” Endpoints

• Clinically meaningful endpoints that directly measure how subject:
 • Feels
 • Functions, or
 • Survives
• Endpoints that characterize the clinical outcome of interest
 – Objective: survival, disease exacerbation, clinical event
 – Subjective: symptom score, “health related quality of life”
• Customarily, the basis for approval of new drugs

Surrogate Endpoints

• Endpoints used as alternative to desired or ideal clinical response to save time and/or resources
• Surrogate for clinical benefit
 • Laboratory measure or a physical sign intended used as substitute for a direct endpoint
• Surrogate endpoints can be used for drug approval:
 – if well validated, or
 – under Subpart H: “accelerated approval” for serious and life-threatening illnesses; 1992

Examples of Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Condition/Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>arterial blood pressure</td>
<td>CVA, MI, heart failure</td>
</tr>
<tr>
<td>Cholesterol and triglyceride levels</td>
<td>atherosclerotic disease</td>
</tr>
<tr>
<td>Increased IOP</td>
<td>Loss of Vision</td>
</tr>
<tr>
<td>Blood sugar</td>
<td>Survival/complications of DM</td>
</tr>
<tr>
<td>Disease-free survival; time to progression; progression free survival</td>
<td>Cancer survival</td>
</tr>
</tbody>
</table>

Surrogate Endpoints: Potential Pitfalls

• Unless validated, relationship between surrogate and direct benefit may not be causal
• True risk:benefit ratio may not be clear
• Drugs may have other unfavorable effects, apart from effect on surrogate
• Use of validated surrogate for study of drugs with different mechanisms of action
• Surrogate creep
Phase I Goals

- Determine dosing in humans
- Assess safety
- Evaluate PKs and PDs
- Explore drug metabolism and drug interactions

Phase I Additional Goal(s)

- Also used to:
 - Evaluate new treatment schedule
 - Evaluate new drug combination strategy
 - Evaluate new multi-modality regimen

May provide early evidence of response, but *NOT* primary aim

Phase I Subjects

General

- Healthy volunteers
- Patients
 - Used when drug is known or expected to be toxic, cytotoxic agents, biological agents
- Special populations (elderly, renal impairment)
- Small numbers
 - 15 - 30
 - <100

Cancer Specific

- Usually many cancer types (e.g. solid tumors)
- Refractory to standard therapy
- No remaining standard therapy
- Adequate organ function
- Adequate performance status

Phase I Standard Design

- Open label, non-randomized, dose escalation
- Low starting dose
 - $1/10^{th}$ the lethal dose (LD10) in the most sensitive species tested = dose at which 10% of the animals die
 - Unlikely to cause serious toxicity
 - Pediatric dose starts at 80% of adult MTD
- 3-6 patients per cohort
- Increase dose gradually
- Most common scheme is a Modified Fibonacci

Classic Modified Fibonacci Dose Escalation Scheme

% Increase Above Preceding Dose:

- **Level 1**: Starting dose
- **Level 2**: 100% increase from Level 1
- **Level 3**: 67% increase from Level 2
- **Level 4**: 50% increase from Level 3
- **Level 5**: 40% increase from Level 4
- **Levels 6+:** 33% increase from Level 5+

3 + 3 Study Design

- **No DLT**
 - Enter 3
- **1 DLT**
 - Enter up to 3 at same DL
 - Stop Escalation
- **2-3 DLTs**
 - Stop Escalation
- **>1 DLT**
 - No more that 1 DLT out of 6
 - Stop Escalation

Stop Escalation
Alternate Designs

Accelerated design
- 1 subject enrolled per DL until grade 2 toxicity then return to the 3 + 3 design

Intrapatient Dose Escalation
- Once a DL has been proven "safe" then subjects at lower levels are able to escalate to the "safe" level
- Subject used as own control and can escalated to higher DL if lower level tolerated

OBD
- Find dose that is considered to safe and have optimal biologic effect (OBD)
- Optimize "biomarker" response within safety constraints

Phase I Endpoints

Dose Limiting Toxicity (DLT)
- General DLT Criteria:
 - ≥ Grade 3 non-heme toxicity
 - Grade 4 neutropenia lasting longer than 5 days
 - Grade 4 thrombocytopenia
- Typically the DLT is defined for the first course/cycle

Maximum Tolerated Dose (MTD)
- Highest dose level at which ≤1/6 patients develop a DLT

Phase I Limitations

- Questionable risks without benefits
- Initial patients may be treated at low (sub-therapeutic) doses
- Slow to complete trial (need to find fairly healthy advanced cancer patients)
- Toxicity may be influenced by extensive prior therapy
- Inter-patient variability
- MTD definition is imprecise
- Minimal data about cumulative toxicity since only the first cycle/course is taken into consideration for a DLT

Phase II Goals

- Provide initial assessment of efficacy or 'clinical activity'
 - Screen out ineffective drugs
 - Identify promising new drugs for further evaluation
- Further define safety and toxicity

Phase II Subjects

- ~100 subjects (100-300)
- More homogenous population that is deemed likely to respond based on:
 - phase I data
 - pre-clinical models, and/or
 - mechanisms of action
- Subject needs to have measurable disease
- May limit number of prior treatments

Phase II Designs

- Most common
 - 2 stage design w/ early stopping rule
- Randomized designs
 - Want to explore efficacy
 - Not willing to invest in phase III (yet)
 - Want some "control" or "prioritization"
Phase II Endpoints

- Response
 - Complete Response (CR)
 - Partial Response (PR)
 - Stable Disease (SD)
 - Progressive Disease (PD)
- Additional safety data

Phase II Limitations

- Lack of activity may not be valid
- Measurable disease required

Phase III

Goals

- Efficacy compared to standard therapy
 - Activity demonstrated in Phase II study
 - Further evaluation of safety

Subjects

- Hundreds to thousands of subjects
- Single cancer type
- May be front-line therapy
- Well-defined eligibility criteria
- Internal control group
- Multi-institutional participation necessary to reach targeted accrual goals

Phase III: Standard Design

- Randomized +/- blinding/masking

Phase III: Endpoints

- Efficacy
 - Overall survival
 - Disease-free survival
 - Progression-free survival
 - Symptom control
 - Quality of life
Phase III: Limitations

- Difficult, complex, expensive to conduct
- Large number of patients required
- Incorporation of results into front-line therapy in community is often slow and incomplete

FDA Cancer Approval Endpoints

- Overall survival
- Endpoints based on tumor assessments
- Symptom endpoints (PROs)
- FDA Guidance: *Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics*

Overall Survival

- Time from randomization until death
- Intent-to-treat population

Endpoints: Tumor Assessments...

- **Disease-free survival**
 - Randomization until recurrence of tumor or death from any cause
 - Adjuvant setting after definitive surgery or radiotherapy
 - Large % of patients achieve CR after chemo
- **Objective response rate (ORR)**
 - Proportion of patients with reduction of tumor size of a predefined amount and for a minimum time period
 - Measure from time of initial response until progression
 - Sum of PRs + CRs
 - Use standardized criteria when possible

Endpoints: Tumor Assessments...

- **Progression free survival (PFS)**
 - Randomization until objective tumor progression or death
 - Preferred regulatory endpoint
 - Assumes deaths are not progression
- **Time to Progression (TTP)**
 - Randomization until objective tumor progression, excluding deaths
- **Time-to-treatment failure (TTF)**
 - Randomization to discontinuation of treatment for any reason (PD, toxicity, death, etc.)
 - Not recommended for regulatory drug approval

Endpoints: Symptom Assessment

- Time to progression of cancer symptoms
- FDA Guidance: *Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims*
- Tools/surveys
- Issues:
 - Missing data
 - Infrequent assessments
Questions