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Why should the taxpayers fund
this "r\/pz oT Work?

Cancer is the second leading cause of death
in America. It accounts for one of every
four deaths. More than 565,000 - that's

more than 1,500 people a day - die annually

from cancer. Close to 1.4 million new cases

are diagnosed each year. This estimate does
not include pre-invasive cancer or the more
than 1 million cases of non-melanoma skin
cancer expected to be diagnosed annually.
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Why do we use mouse models?
To prevent, diagnose and treat human disease

e geneftics

e progression

e prevention

e diagnhostics

e therapeutics

e physiologically complex vs in vitro studies
e cost effective

e develop human clinical protocols
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What models are available?

e Spontaneous

e Virus-induced

e Transgenic

e Knock-out/in

e Induced/carcinogens
e Transplanted




Spontaneous Models

These allow the study of the biological history of natural disease. They can be
applied fo many types of studies.

e Natural history is most "normal”

e Random ftumors

e Difficult to predict occurrence

e Monitor through lifespan ~ 2 yr in mice

e Large number of animals may be required
for a small experiment

e Tumors may be heterogeneous
e Significant animal holding space needed -




Virus-Induced Models

Early studies of cancer, both as a disease state and for therapeutic
intervention, used virus-induced models. These models continue to be applied
in a variety of studies.

e Classic models of virus-induced leukemia:
e Rauscher

e Moloney
e LP-BM5
e Friend

e Non-leukemic tumors including:
e Mammary tumors due to MMTV
e Thymomas of AKR mice

High fumor occurrence rate

Predictable time to tumor development

Well-characterized disease states/natural history

Do not accurately reflect the natural history of most human

tumors
db




Transgenic Models

Transgenic models aid our understanding of the genetics of cancer and are
being pursued as models for intervention.

e Many available through commercial and collaborative arrangements
http://emice.nci.nih.qov/emice/mouse_models
http://mouse.ncifcrf.qov/
http://jaxmice. jax.org/query/f?p=205:1:1510299228434659165

e Not all patents have expired - check with OTT regarding legalities

e Remember MTASs are needed to receive or ship material that may
have patent or licensing rights. This also applies to mice.

e Rate of tumor occurrence may be low
e Time to fumor occurrence may be difficult to predict

e Breeding schemes may be complex e.g., 3, 4 or more
infermediate genetic crosses

e Genetic error(s) are generally well characterized

e Disease may follow a more natural course e.g., time to
significant tumor burden maz more accurately mimic the 4
human; lesions likely relevant to their site of occurrence [



http://emice.nci.nih.gov/emice/mouse_models
http://mouse.ncifcrf.gov/
http://jaxmice.jax.org/query/f?p=205:1:1510299228434659165

Induced/Carcinogens

These models aid studies of the local, systemic, and environmental
factors that influence tumor susceptibility, growth, and progression.

e Epithelial fumorigenesis

e 7,12-dimethylbenz[a]anthracene [initiator mutagen] followed by multiple
apfplica’rions of 12- O-tetradecanoylphorbol-13-acetate [pro-
inflammatory]

e GI tumorigenesis
e 1,2 dimethlhydrazine-2-HCI
e azoxymethane

e Sarcoma induction
e Methylcholanthrene

e Lung tumorigenesis

e nitrosamine 4- (methyl-nitrosamino)-1-(3-pyridyl)-1-butanone
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Induced/Carcinogens

e Time to fumor development may be
variable

e Mimics some human diseases very well

e Requires technical work with known
carcinogenic agents thus special
handling/equipment/facilities/training
required

e Provides the entire natural history of
tumor development to study
dbo




Transplanted Models

These models are commonly applied in studies of genetics,
diagnostics, and medical interventions.

e [issue Source

e Syngeneic - same inbred strain - e.g., B16 tumors
in C57BI/6 mice

e Allogeneic - same species, different strain
(genetically diverse) - e.g., M5076 sarcomas in
athymic mice

e Xenogeneic - different species e.g., human, rat or
dog tumors grown in immunocompromised mice

e Implant Site
e Orthotopic
e Heterotopic

e Endpoints 3




Transplanted Models

e Easy to control time of tumor occurrence

e Many tumor types/lines available

e \Well accepted models

e Do not accurately recapitulate human disease
e Metastatic lesions are difficult to find

e Tumor growth rates may preclude multiple
treatment cycles
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In Vivo ETfficacy Models

* Human Tumors * Rodent Tumors
- Hollow fiber - Subcutaneous
- Subcutaneous - Intravenous
- Intravenous - Intraperitoneal
- Intraperitoneal - Orthotopic
- Orthotopic - Metastatic
* Mammary fat pad - Transgenic
» Intracranial - Knock-in/out
* Intrarenal
* Intrahepatic - Induced

- Spontaneous E’

- Intracecal



I'ssues faced during
Efficacy Evaluations

e Model

e Vehicle, formulation, stability
e Dose, route and schedule

e Experimental protocol

¢ Endpoints




Mode| Selection

e What are you assessing?
e Which type of model is most appropriate?
e Is the treatment designed to:

impact the tumor chemically, e.g., cytotoxic

impact the tumor genetically, e.g., modulator

impact the stroma e.qg., vasculature

impact the immune system

act as an adjuvant

synergize with known drugs

interact with specific proteins [’




Median Tumor Weight

Day Post-Implantation

=
2
()
=
S
S
S
|_
c
e
S
[}
=

13 19 22 26 29 33 36 39 46 50 53 56 60 63
Day Post-implantation

e 100% sesame oil -] =45 mg/kg tamoxifen

— = 22.5 mg/kg tamoxifen et 11.25 mg/kg tamoxifen




cxperimental Protocol

e When will treatment start?
e When will treatment end?

o Wil
eva
o Wil

samples be collected for ex vivo
uation?

tumors be monitored visually, by

imaging techniques?
e What will ferminate the experiment,

l.e.,

what are the endpoints?
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Dose, Route, Schedule

e What is published/prior knowledge?
e What is proposed/expected mechanism?
e How much exposure is required for effect?

e I's the material soluble/stable in aqueous
solution?

e What routes of administration are technically
feasible?

e Options
e What is the maximum tolerated dose (MTD)?
e IP, IV, SC, PO?
e QDx?; BIDx?; TIDx?
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— X me \/ENIClE - == temozolomide 400 mg/kg
-\ temozolomide 200 mg/kg x 3 -—o== topotecan 1 mg/kg QDx10




chdpoints

e Tumor size

e Weight loss

e Time to sacrifice

e Imaging

e Pre-defined time of termination
e Time post-treatment




Tumor Weight (mg)
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Measuring antitumor drug activity using
bioluminescence vs. tfumor weights
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In Vivo S’rudies
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Tools for Analysis
e THC

e Original tumor and each passage
e Antibodies for specific gene products
e Molecular analysis
e gene expression: microarray (LCM), RT-PCR
e proteins/phosphoproteins: reverse arrays, IHC
e biomarkers: serum proteomics

e Analysis of host response
e immune system response
(syngeneic v.s. immunosuppressed)
e Angiogenesis (MFP v.s. sc)

e Stem Cell search
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Many Models - Many Options

Statistically valid model assessing
relevant endpoints on an optimal schedule
with clinically appropriate doses.

With few exceptions, every rodent model, even if
conducted with hundreds of experimental mice,
represents a single patient. Interpreting the
preclinical results and applying these outcomes to
human clinical trials continues to prove challenging
for those charged with translating the preclinical
experience into viable drug candidates. E




PROBLEMS

e The appropriateness of animal models to
identify, qualify and promote new
therapies for cancer has been under
review, and in some ways under attack, for
many years. Continuing concerns about
the failure rate of agents being sent to the
clinic has led to a flurry of publications on
the irreproducibility of published preclinical
data and their over-prediction of activity.
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Helping New Drugs Out of Research’s “Valley of

Death’
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Consider two numbers: 800,000 and 21.

L

The first is the number of medical research papers that were
published in 2008. The second is the number of new drugs that were

approved by the Food and Drug Administration last year.

That's an ocean of research
producing treatments by the drop.
Indeed, in recent decades, one ot
the most sobering realities in the
tield ot biomedical research has

been the fact that, despite significant increases in funding — as well

as extraordinary advances in things like genomics, computerized
molecular modeling, and drug screening and synthesization — the
number of new treatments for illnesses that make it to market each

vear has flatlined (pdf) at historically low levels.
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How Many Scientists Fabricate and Falsify Research? A
Systematic Review and Meta-Analysis of Survey Data

Daniele Fanelli*

INNOGEN and 155Tkinstitute for the Study of Science, Technology & Innovation, The University of Edinburgh, Edinburgh, United Kingdom

Abstract

The frequency with which scientists fabricate and falsify data, or commit other forms of scientific misconduct is a matter of
controversy. Many surveys have asked scientists directly whether they have committed or know of a colleague who
committed research misconduct, but their results appeared difficult to compare and synthesize. This is the first meta-
analysis of these surveys. To standardize outcomes, the number of respondents who recalled at least one incident of
misconduct was calculated for each guestion, and the analysis was limited to behaviours that distort scientific knowledge:
fabrication, falsification, "cooking” of data, etc... Survey guestions on plagiarism and other forms of professional
misconduct were excluded. The final sample consisted of 21 surveys that were included in the systematic review, and 18 in
the meta-analysis. A pooled weighted average of 1.97% (N= 7, 95%Cl: 0.86-4.45) of scientists admitted to have fabricated,
falsified or modified data or results at least once —a serious form of misconduct by any standard- and up to 33.7% admitted
other guestionable research practices. In surveys asking about the behaviour of colleagues, admission rates were 14.12%
IN=12, 95% Cl: 9.91-19.72) for falsification, and up to 72% for other questionable research practices. Meta-regression
showed that self reports surveys, surveys using the words "falsification” or "fabrication”, and mailed surveys yielded lower
percentages of misconduct. When these factors were controlled for, misconduct was reported more frequently by medical/
pharmacological researchers than others. Considering that these surveys ask sensitive questions and have other
limitations, it appears likely that this is a conservative estimate of the true prevalence of scientific misconduct.

Citation: Fanelli D {2009) How Many Scientists Fabricate and Falsilfy Ressarch? A Systematic Review and Meta-Analysis of Survey Data. PLoS ONE 4{5: 57358
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Do Pressures to Publish Increase Scientists’ Bias? An
Empirical Support from US States Data

Daniele Fanelli*

IMMOGEN and Institute for the Study of Science, Technology and Innovation (15571}, The University of Edinburgh, Edinburgh, United Kingdom

Abstract

The growing competition and "publish or perish” culture in academia might conflict with the objectivity and integrity of
research, because it forces scientists to produce “publishable” results at all costs. Papers are less likely to be published and
to be cited if they report "negative” results {results that fail to support the tested hypothesis). Therefore, if publication
pressures increase scientific bias, the frequency of "positive” results in the literature should be higher in the more
competitive and "productive” academic emvironments. This study verified this hypothesis by measuring the frequency of
positive results in a large random sample of papers with a corresponding author based in the US. Across all disciplines,
papers were more likely to support a tested hypothesis if their corresponding authors were working in states that, according
to MSF data, produced more academic papers per capita. The size of this effect increased when controlling for state's per
capita RED expenditure and for study characteristics that previous research showed to correlate with the frequency of
positive results, including discipline and methodology. Although the confounding effect of institutions’ prestige could not
be excluded (researchers in the more productive universities could be the most clever and successful in their experiments),
these results support the hypothesis that competitive academic environments increase not only scientists’ productivity but
also their bias. The same phenomenon might be observed in other countries where academic competition and pressures to
publish are high,
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LINK TO ORICIMNAL ARTICLE

Believe it or not: how much can we

rely on published data on potential
drug targets?

results that are published are hard to repro-
duce. However, there is an imbalance between
this apparently widespread impression and its
public recognition (for example, see REFS 23],
and the surprisingly few scientific publica-
tions dealing with this topic. Indeed, to our
knowledge, so far there hasbeen no published
in-depth, systematic analysis that compares

Florian Prinz, Thamas Schiange and Khusru Asadullah
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Lab Mistak

iliobble Caticer Studies

But Scientists Slow to Take Remedies

By Amy Dockser MARCUS

Last year, cancer researcher
Robert Mandic got news no sci-
entist wants to hear.

After publishing a paper on a
rare head-and-neck cancer, he
learned the cells he had been
studying were instead cervical
cancer. He notified the journal
Oral Oncology, which retracted
the article,

“To base something en wrong
data is bad, so it needs to be re-
ported and I did,” said Dr. Man-
| dic, a researcher at the Univer-
sity Hospital Giessen and
Marburg in Germany. “But it
wasn't pleasant to call”

pr. Mandic entered a largely
gacret fellowship of scientists

——— e e

whose work has been under-
mined by the contamination and
misidentification of cancer cell
lines used in research labs
around the world.

ancer experts seeking (o
solve the problem have found
that a fifth to a third or more of
cancer cell lines tested were mis-
takenly identified—with re-
searchers unwittingly studying
the wrong cancers, slowing prog-
ress toward new treatments and
wasting precious time and
money.

In hundreds of documented
cases that undermine a broad
swath of research, cancer sam-
ples that were supposed to he
pne type of tumor have turned
out to be another, through either

- -

careless laboratory handling,
mislabeling or other mistakes.

It is a problem hiding in plain
sight. Warnings to properly test
cancer cell lines have sounded
since the 1960s, a decade after
ceientists started making human
cancer cell lines.

But researchers who yelled
loudest were mostly ignored by
colleagues fearful such a mistake
in their own labs would discredit
years of work.

Leaders in the field say one of
the higgest obstacles to finding a
cancer cure may not be the many
defenses nature affords malig-
nancies, but the reluctance of
seientists to address the prob-
lem.

“gereaming and shouting, it

doesn’t do any good, No one
takes any notice for reasons 1
don’t understand,” said John
Masters, a professor of experi-
mental pathology at University
College London, UCL. “The whole
ethos of science is to strive for
the truth and produce a balanced
argnment about the evidence.
yet, all thic crap is being pro-
tueed.”

Dr. Masters said cell banks re-
port that 20% of cell lines sent
for inclusion in their repositories
for use by researchers are im-
properly identified. He was co-
chair of an international commit-
tee of scientists that released
voluntary guidelines this year to
begin solving the problem. They
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This is one of medicine's dirty secrets: Most results, including those that appear in top-
flight peer-reviewed journals, can't be reproduced

“It's a very serious and disturbing issue
pbecause it obviously misleads people”
who implicitly trust findings published In a
respected peer-reviewed journal, says
Bruce Alberts, editor of Science. On
Friday, the U.S. journal is devoting a
large chunk of its Dec. 2 issue to the
problem of scientific replication
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What can you do?

e 1. use well powered animal studies

e 2. reproduce your own data

e 3. have 2 separate operators generate the data
e 4. provide adequate detalls in publications

e 5. don’t over-interpret your data

e 6. stage tumor studies correctly

e /. don’t selectively use/present your data

e 8. remember the clinical situation and what can be
assessed In man

a




Clinical Endpoints In Man

e Toxicity - What harmful effects are induced?
e Tumor response - Does the cancer respond to the treatment?

e Biomarker modulation as a measure of the effect of a
treatment that may correlate with a traditional clinical
endpoint (PFS; TR)

e Progression-free survival (stable disease)
e Tumor regression
e Statistically significant improvement in survival

e Survival - how long does the person live?

e Quality of life - how does the treatment affect a person's
overall enjoyment of life and sense of well being?

a
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