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Abstract
Under normal conditions, hepatocyte growth factor (HGF)-induced Met tyrosine kinase (TK)
activation is tightly regulated by paracrine ligand delivery, ligand activation at the target cell
surface, and ligand activated receptor internalization and degradation. Despite these controls,
HGF/Met signaling contributes to oncogenesis and tumor progression in several cancers and
promotes aggressive cellular invasiveness that is strongly linked to tumor metastasis. The
prevalence of HGF/Met pathway activation in human malignancies has driven rapid growth in
cancer drug development programs. Pathway inhibitors can be divided broadly into biologicals
and low molecular weight synthetic TK inhibitors; of these, the latter now outnumber all other
inhibitor types. We review here the basic properties of HGF/Met pathway antagonists now in
preclinical and clinical development as well as the latest clinical trial results. The main challenges
facing the effective use of HGF/Met-targeted antagonists for cancer treatment include optimal
patient selection, diagnostic and pharmacodynamic biomarker development, and the identification
and testing of optimal therapy combinations. The wealth of basic information, analytical reagents
and model systems available concerning HGF/Met oncogenic signaling will continue to be
invaluable in meeting these challenges and moving expeditiously toward more effective disease
control.
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1. Introduction
The MET oncogene was first isolated from a human osteosarcoma-derived cell line on the
basis of its transforming activity in vitro, caused by a DNA rearrangement where sequences
from the TPR (translocated promoter region) locus on chromosome 1 were fused to MET
sequence on chromosome 7 (TPR-MET) (1). A similar gene rearrangement was later found
in patients with gastric carcinoma (2, 3). Isolation of the full-length MET proto-oncogene
sequence revealed that it encoded a receptor tyrosine kinase (TK) (2). The subsequent
identification of hepatocyte growth factor (HGF) as the natural ligand for the Met receptor
protein (4), and the identity of scatter factor (SF) and HGF united a collection of findings
demonstrating that a single receptor transduced multiple biological activities including
motility, proliferation, survival and morphogenesis (5–8).

Both HGF and Met proteins are processed proteolytically from single chain precursors into
mature disulfide linked heterodimers. Both are widely expressed early in development and
deletion of either gene lethally disrupts embryogenesis (5, 6, 8). The widespread expression
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of both MET and HGF genes persists throughout adulthood and upregulation of HGF
expression after kidney, liver or heart injury suggests that pathway activation protects
against tissue damage and promotes tissue repair and regeneration (9–13). The strong
interaction between HGF protein and cell surface heparan sulfate (HS) proteoglycans is
broadly relevant to HGF biology and HS can be thought of as an HGF co-receptor,
modulating HGF binding, Met activation and cellular responses (14–19). Similar to
fibroblast growth factor (FGF) signaling, which requires not only FGF-HS binding, but also
FGF receptor-HS interaction (20), evidence suggests that HS may facilitate HGF signaling
through interactions with both HGF and Met (21). Upon HGF binding, Met
autophosphorylation occurs on tyrosine residues Y1234 and Y1235 (numbered according to
GenBank J02958) within the activation loop of the TK domain, inducing kinase activity,
while phosphorylation on Y1349 and Y1356 near the carboxyl terminus forms a docking site
for intracellular adapters that transmit signals downstream (6, 8). An intact docking site is
required for transformation and metastasis (8). Critical signaling mediators in this pathway
include Grb2, Gab1, phosphatidylinositol 3-kinase (PI3K), phospholipase C-gamma
(PLCγ), Shc, Src, Shp2, Ship1 and STAT3 (6, 8).

2. Oncogenic HGF/Met Signaling
Under normal conditions, hepatocyte growth factor (HGF)-induced Met tyrosine kinase
(TK) activation is tightly regulated by paracrine ligand delivery, ligand activation at the
target cell surface, and ligand activated receptor internalization and degradation. Despite
multiple controls, pathway deregulation occurs in a variety of neoplasms. Among the
hundreds of genes upregulated by HGF are those encoding proteases required for HGF and
Met processing, as well as MET , creating the potential for its overexpression through
persistent ligand stimulation (6). Indeed, MET overexpression is characteristic of several
epithelial and mesenchymal cancers and is an independent prognostic factor associated with
adverse outcome (22). MET gene amplification is thought to be an important driver of
metastasis in a subset of lung cancers that acquire resistance to agents targeting epidermal
growth factor family members (23). Other mechanisms of oncogenic pathway activation
include aberrant paracrine or autocrine ligand production, constitutive kinase activation in
the presence or absence of MET gene amplification, and MET gene mutation (5, 24, 25).
Missense MET mutations occur in several cancers; the earliest reported mutations were
found exclusively in the Met TK domain and were associated with hereditary and sporadic
forms of papillary renal cell carcinoma (PRC) (26, 27). Mutations throughout the MET
coding sequence were later found in lung cancer and in head and neck cancers (28, 29).

The impact of specific MET mutations have been studied act at the molecular, cellular and
organismal levels. Structural modeling of the Met TK domain indicated that activating PRC
mutations interfere with an intrinsic mode of autoinhibition (30, 31). Early cell-based
investigations confirmed that kinase activity was deregulated in various mutant forms and
revealed that these could have distinct biological effects. For example, the PRC-associated
mutations D1228H/N and M1250T showed enhanced kinase activity, Ras pathway
activation and focus formation, while L1195V and Y1230C more effectively activated PI3K,
promoting cell survival, soft agar colony formation and matrix invasion (32, 33). Although
mutations that were reconstituted in HGF-producing cells (such as NIH3T3) could not
rigorously address the role of ligand binding in oncogenesis, later studies showed that
mutations expressed in epithelial cells required added ligand for soft agar colony formation
and that colony formation by NIH3T3 bearing Met M1250T could be blocked by ligand
binding antagonists (34). PRC-associated MET mutations also have been investigated in
mice by engineering changes in the murine MET locus (35). Interestingly, mice harboring
D1226N, Y1228C, and both M1248T and L1193V mutations developed sarcomas with high
frequency and some lymphomas, whereas the M1248T mice developed carcinomas and
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lymphomas; no mice developed PRC (35). Furthermore, analogous to the trisomy of
chromosome 7 frequently observed in human PRC tumors, trisomy of chromosome 6
(containing the murine MET locus) and preferential duplication of the mutant MET allele
was observed in most tumors. These results independently confirm the oncogenicity of PRC-
associated MET mutations in vivo and suggest that distinct mutations influence the types of
cancers that develop in mice (35).

Other alterations in the MET coding sequence have been identified in regions encoding the
extracellular semaphorin domain (E168D, L229F, S323G, and N375S) and the intracellular
juxtamembrane (JM) domain (R988C, T1010I, S1058P, and exon 14 deletions) of non-small
cell lung carcinoma (NSCLC)-derived cell lines, in 12.5 % of small lung cell cancer (SCLC)
cases, as well as in 8% of samples of lung adenocarcinoma tissues (29, 36–38). Some of
these mutations activate proliferation, motility and invasiveness in cultured cells (29).
Importantly, the JM domain regulates ligand-dependent Met internalization: Y1003 is
phosphorylated in response to HGF binding and recruits c-Cbl, leading to Met ubiquitination
and degradation (1). In Met JM domain mutants missing exon 14, the loss of Y1003 results
in Met accumulation at the cell surface and persistent HGF-stimulated signaling that leads,
in turn, to increased transforming activity and tumorigenic potential (1). Overall, MET
mutation occurs at a lower frequency than most other mechanisms of pathway activation in
tumors; nonetheless, mutations provide strong direct evidence of the pathway’s oncogenic
potential and may identify patients most likely to benefit from Met-targeted therapeutics.

Consistent with the role of this pathway in organogenesis, oncogenic Met signaling
resembles developmental transitions between epithelial and mesenchymal cell types
normally regulated by HGF: increased protease production coupled with cell dissociation
and motility promotes cellular invasion through extracellular matrices, enabling tumor
invasiveness and metastasis. Conversely, silencing the endogenous, overexpressed MET
gene in tumor cells suppresses tumor growth and metastasis, and induces the regression of
established metastases in mouse models (39). In addition, HGF/Met signaling in vascular
endothelial cells stimulates tumor angiogenesis, facilitating tumor growth for cancers that
are growth-limited by hypoxia, and independently promoting tumor metastasis. Hypoxia
alone upregulates MET expression and enhances HGF signaling in cultured cells and mouse
tumor models (40).

3. The Development of Cancer Drugs Targeting the HGF/Met Pathway
The prevalence of HGF/Met pathway activation in human malignancies has driven rapid
growth in drug development programs. Agents currently under development as HGF/Met
pathway inhibitors can be broadly subdivided into biologicals and low molecular weight
synthetic compounds (Figure 1). Biologicals, or protein-based agents, act through a variety
of mechanisms and possess target selectivity and pharmacokinetic (PK) properties that are
predictable and often desirable. Nonetheless, their size typically restricts their action to
extracellular events and their complexity impacts drug manufacture, routes of administration
and shelf-life. Thus it is not surprising that synthetic, low molecular weight TK inhibitors
(TKIs) presently outnumber every other class of HGF/Met therapeutic.

3.1. Biological HGF/Met Pathway Antagonists
Biologicals are primarily directed against ligand-receptor binding or related cell-surface
events such as receptor clustering, and include [1] truncated HGF isoforms; [2] HGF forms
that resist proteolytic activation or its conformational consequences; [3] truncated soluble
forms of the Met ectodomain; and [4] neutralizing monoclonal antibodies (mAbs) directed
against HGF or Met.
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Early studies revealed that NK2, the truncated protein product of a naturally occurring
alternative HGF mRNA transcript, could competitively antagonize growth stimulated by
full-length HGF (41). However, the potential anti-oncogenic efficacy of NK2 was later
shown to be compromised by its intrinsic motogenic activity, which enhanced HGF-driven
metastasis in mouse models (42–46). A longer truncated isoform of full-length HGF known
as NK4 has proven to be a complete competitive antagonist of HGF/Met oncogenic
signaling in a variety of preclinical models and is now entering human clinical trials (47–
49). The properties of all HGF/Met agents now in human clinical trials are summarized in
Table 1 and available trial results in Table 2.

Antagonistic HGF forms that resist proteolytic activation or its conformational
consequences exploit the requirement for proteolytic cleavage that converts pro-HGF to a
biologically active heterodimer (50–53). Uncleavable forms of HGF have been engineered
by substituting single amino acids in the proteolytic site; such agents suppress Met-driven
tumor growth, metastasis and angiogenesis in murine tumor models (54). Related
antagonists consisting of two-chain HGF mutants exploit the mechanism by which
proteolytic conversion allosterically stabilizes HGF-Met binding to promote kinase
activation (55). Structure/function analysis of Met extracellular subdomains has also
fostered the development of biological HGF/Met pathway antagonists. Soluble Met Sema
domain constructs that sequester HGF and interfere with Met homodimerization suppressed
HGF-induced tumor cell migration (56), as well as tumor growth and metastasis in mice
(57).

Among HGF/Met-targeted biologicals, the most advanced drug candidates are mAbs
directed against either HGF or Met. The majority of these block HGF/Met binding, although
at least one anti-Met mAb decreases Met activation by inducing ectodomain shedding and
degradation (58). Neutralizing mAbs against human HGF, such as L2G7, AMG102 and
SCH900105 (formerly AV299) each potently suppressed the growth of tumor xenografts in
mice (59–63). AMG102, currently in phase I and II clinical trials (64), binds to the HGF
light chain with Kd of 0.22 nM, blocks HGF-Met binding with an IC50 of 2.1 nM, and was
well tolerated in humans (60, 65). The maximum tolerated dose (MTD) was 20 mg/kg and
adverse events (AEs), which included fatigue, constipation, anorexia, nausea and vomiting,
were predominantly low grade (66). AMG102 was maintained in the body with a mean half-
life of 15.4 hours (66). SCH900105 is currently in phase I trials: this antibody was also very
well tolerated in patients at doses up to 20 mg/kg and had a similar 15 h half-life. In its first
completed trial, SCH900105 treatment was associated with stable disease (SD) in half of the
patients, the longest for 34 weeks (61–63). A humanized, bivalent anti-Met monoclonal
antibody, h224G11, inhibits Met phosphorylation and dimerization and blocks proliferation,
migration, invasion, morphogenesis and angiogenesis in cell-based studies (63, 67). Another
anti-Met mAb that blocks ligand binding, MetMab (formerly OA5D5), is an engineered
monovalent antibody that has been shown to inhibit tumor growth in animal models by more
than 95 percent (68). MetMab has an IC50 of 2.6 to 8.7 nM in intact cells, downregulates
constitutively active Met in tumor cell lines (69), and is currently in phase I/II human
clinical trials in comparison with erlotinib in patients with NSCLC (64).

3.2. Small Synthetic Met Kinase Inhibitors
Most Met TKIs competitively antagonize occupancy of the intracellular ATP binding site,
preventing phosphorylation, TK activation and downstream signaling. ARQ197, in contrast,
binds to a region of Met outside of the ATP binding site and impairs kinase activation
allosterically (70). Preclinical studies show that Met TKIs potently and selectively suppress
growth, migration, and/or survival in a variety of tumor-derived cell lines. These agents are
in various stages of development; they are discussed here starting with preclinical candidates
and ending with those now entering phase III clinical trials.
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Early studies of Met-targeted TKIs, such as SU11274 (IC50 of 20 nM) (36, 71, 72) and
PHA665752 (IC50 of 9 nM) (24, 73), established that Met TKIs could potently suppress
oncogenesis and provided a platform for improving potency, selectivity and other drug
properties. Agents such as RP1040 (IC50 of 1.3 nM) (74) and CEP-A (IC50 of 13 nM) (75)
are recent preclinical candidates likely to have benefited from those founding reports.
RP1040 shows good oral availability and displays a half-life of up to 9 h in intact cells (74).
CEP-A shows sustainable pharmacodynamic (PD) effects in mouse studies, resulting in
significant tumor growth inhibition, stable disease (SD) and partial regression (75).

Met TKIs now entering phase I clinical trials to establish safety and tolerability include
JNJ-38877605 and PF-04217903. The former shows >1000-fold selectivity for the Met
kinase relative to >200 related receptor TKs (76), while the latter targets Met as well as
anaplastic lymphoma kinase (ALK) (77). Phase I trials with AMG 208 and E7050 are also
recruiting patients with advanced solid tumors in which safety, tolerability, PK, and
potential PD markers will be evaluated (64). AMG 208 selectively inhibits both ligand-
dependent and ligand-independent Met activation (78)}, while E7050 targets both Met and
VEGFR2 (79). A phase I study of MK8033, which targets Met with IC50 of 1.3 nM and the
Met family member Ron, is also underway (64). MP470 inhibits PDGFR, Kit and Met; in
preclinical studies, MP470 combined with erlotinib inhibited prostate cancer cell
proliferation and tumor xenograft growth (80), and MP470 treatment sensitized glioblastoma
cells to radiotherapy in mice (81). A phase I clinical trial of MP470 has shown tolerability of
up to 500 mg/day with little toxicity (80). SGX523 showed early promise as a highly
selective Met TKI, but phase 1 clinical trials were discontinued after renal toxicity was
observed in patients receiving relatively low doses (82). The fact that several other selective
Met TKIs do not display this level of renal toxicity suggests that a unique metabolite of
SGX523 may have been responsible.

Several Met TKIs are in phase I/II clinical trials that further test safety and efficacy.
BMS777607 (IC50 of 3.9 nM) has completed a phase I/II study in metastatic cancer patients
although results are not yet available (83). MGCD265, targeting Met, VEGFR1–3, Ron, and
Tie2 is currently in phase I/II studies in combination with erlotinib or standard of care
(SOC) treatments; safety trials have shown a half-life of 20–30 hours with no grade 2 or
higher AEs (84, 85). MK2461 has completed phase I/II trials and showed a half-life of
approximately 6 hours, few AEs above grade 1 (which included anorexia, fatigue and
nausea), and a best response of SD for six treatment cycles (86, 87).

Foretinib (GSK1363089; formerly XL880) and ARQ197 have shown promising results in
multiple phase II trials. Foretinib targets Met and VEGFR2; trials have shown a half-life of
60 hours at the maximum dose of 240 mg/day. The most common AEs were grade 1 or 2
fatigue, hypertension, nausea, anorexia and vomiting. Several studies have shown SD for at
least 10 months and some patients have experienced >20 percent reduction in tumor size
(88–91). ARQ197 is reported to be highly selective for Met and has an IC50 of 50 nM in
vitro (86). Although its mechanism of action is not yet completely defined, this compound
may represent a new class of low molecular weight TKI (70). Current phase II clinical trials
compare ARQ197 with TKIs against other targets, although results are not yet available
(70).

Met TKIs furthest in development include XL184 and PF02341066, both now entering
phase III clinical trials. XL184 targets Met, VEGFR2, and Ret and has a half-life of 80–90
hours (92). On average, patients show SD greater than 3 months with several up to 6 months
while on treatment (93). A current phase III trial investigates XL184 as a first line treatment,
compared to placebo, in patients with medullary thyroid cancer (64). PF-02341066, which
has greater Met selectivity relative to PF-04217903 (94), is currently recruiting for phase I,
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II and III clinical trials (64). It is well tolerated up to the MTD of 240 mg/day and preclinical
studies indicate it is highly effective against the product of the EML4-ALK translocation
found in a subset of NSCLC patients (95, 96).

4. Advanced Trials and Future Directions: Patient Selection,
Pharmacodynamic Markers and Combination Treatments

An important challenge facing the effective use of molecularly targeted therapeutics is
identifying those patients most likely to benefit from treatment. Preclinical studies of several
Met-targeted agents have included investigating their effectiveness against known Met
mutants; for example, PF02341066 is more effective than PF-04217903 against the Y1230C
mutation (94). In a current phase II trial of foretinib, PRC patients with germline or somatic
MET mutations, MET gene amplification or trisomy of chromosome 7 are being compared
to those without these features but otherwise histologically similar tumor phenotype (88–
91). Future trials are likely to follow this trend where possible.

Another common patient selection strategy has been the use of immunohistochemical
analysis (IHC) of tumor sections, because these specimens are routinely obtained for
standard pathological diagnosis. However, few antibodies currently available work well in
IHC because recognition is compromised by tissue fixation and paraffin-embedding. Only
recently has a mAb targeting the extracellular domain, MET4, shown high sensitivity and
low background in IHC (97). Although IHC provides important spatial and morphological
information, quantitative comparisons are problematic. As an alternative, immunoassays of
tissue extracts can provide precise, absolute measurements of Met content and
phosphorylation state, but lack morphological information and typically require frozen tissue
samples.

Reliable PD markers have always been important to drug development, and are even more
so now that combinations of highly selective targeted drugs are considered. Several ongoing
clinical trials of Met-targeted drugs include PD marker studies. Plasma concentrations of
soluble Met (sMet), soluble VEGFR2 (sVEGFR2), VEGF, PIGF, and EPO changed
significantly during foretinib dosing (89, 90, 98). Plasma HGF, VEGF, sMet, sVEGFR2
were also examined in response to MGCD265 treatment (84, 85); both studies suggest that
these may become useful PD markers. In a clinical study of XL184, modulation of plasma
VEGFA, sMet, sVEGFR2, sKIT, and PIGF were also consistent with on-target drug effects
(99). Studies have also linked PD markers to clinical response, such as plasma HGF levels
during XL184 treatment (100), similar to changes in HGF levels reported in a study of RCC
patients treated with sorafenib (101) or pazobanib (102).

The emergence of primary and acquired resistance to TKIs from pre-existing or de novo
mutations, respectively, must be addressed in the design of future clinical studies. Strategies
to overcome this problem include: [1] selecting treatments based on the presence of known
susceptibility factors; [2] combining different classes of inhibitors of a single pathway; [3]
combining therapeutics against multiple pathways; and [4] combining targeted therapeutics
with SOC treatments. An example of the first strategy is the use of MK8033 in patients with
MET amplification or constitutive Met activation, with the hope of confirming predictive
preclinical results (103). Combinations of HGF/Met mAbs and Met TKIs, as in the second
strategy, are planned for future trials. The third design is being used in several current trials
of Met antagonists: ARQ197, MGCD265, XL184, and PF02341066 are being used in
combination with Erlotinib for the treatment of NSCLC and ARQ197 is also being tested in
combination with Sorafenib for the treatment of advanced solid tumors (64). Adding Met-
targeted therapies to first-line therapies targeting other pathways may be particularly useful
for cancers where Met may participate in the acquisition of resistance and thereby
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dramatically increase the risk of metastasis. MET gene amplification was detected in 22% of
lung cancer specimens that had acquired resistance to gefitinib or erlotinib, and treatment of
a lung cancer cell line that had acquired gefitinib resistance through MET amplification with
a Met-targeted TKI restored gefitinib sensitivity (104). Several studies of Met inhibitors in
combination with erlotinib for the treatment of NSCLC are now under way with promising
results (23). Examples of the fourth strategy are also abundant: trials combining AMG102,
ARQ197, MP470, MGCD265, XL184, or PF02341066 with SOC treatments -
chemotherapeutic agents or radiotherapy, are also currently underway (64). Again,
preclinical studies such as those combining AMG102 with temozolomide or docetaxel for
the treatment of gastric, prostate, and colorectal cancers provide a sound rationale and guide
initial trial design (59).

In closing, the wealth of basic knowledge about HGF/Met biology has enabled an accurate
assessment of the pathway’s oncogenic potential and provided the insight needed to develop
potent and selective inhibitors and use them with relative safety in humans. Patient selection,
of primary importance, will advance as more robust methods are developed to analyze the
many known potential diagnostic biomarkers of pathway activity. Methods that rely on
DNA or RNA (e.g. detecting MET gene amplification or mutation) are now faster and more
sensitive than those available for quantitating Met protein content and phosphorylation state,
but efforts to improve both are underway. Similarly, the need for PD markers that track drug
effect and patient response is recognized and clinical PD marker studies currently underway
reveal solid candidates. Finally, although the complexity of cancer and the risk of acquired
resistance may limit the use of HGF/Met molecular therapeutics as single agents to
subgroups of patients, much evidence suggests that pathway involvement is widespread and
critical for metastasis. Thus for HGF/Met pathway inhibitors in particular, combinatorial
phase II trials with small, carefully selected patient groups may be the most expedient path
to more effective cancer treatment.
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Figure 1. Methods of Blocking the HGF/Met Signaling Pathway
Oncogenic signaling by cellular Met (in blue) and its natural ligands (in yellow) can be
antagonized by several distinct inhibitor types (in violet). The intracellular tyrosine kinase
(TK) domain and carboxyl terminal docking sites (Y1349 and Y1356) of Met are noted.
Pathway inhibitors can be divided broadly into two subtypes (1) biological antagonists of
HGF activation and HGF/Met binding, and (2) Met TK inhibitors (TKIs). Biological agents
acting outside of the target cell (1) include anti-HGF and anti-Met mAbs, soluble Met
ectodomain constructs and truncated HGF isoforms (all of which interfere with HGF/Met
binding) and uncleavable forms of HGF (which competitively displace pro-HGF from its
activators). Agents acting within the cell (2) include TKIs that competitively displace ATP
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from its TK domain binding site (TKI-1) and those which bind outside of the ATP binding
pocket and inhibit Met TK activation allosterically (TKI-2).
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