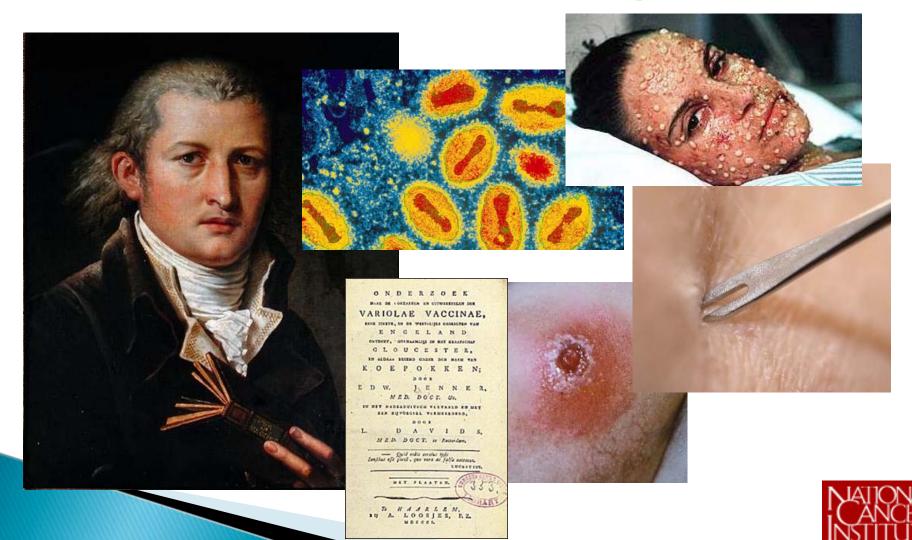
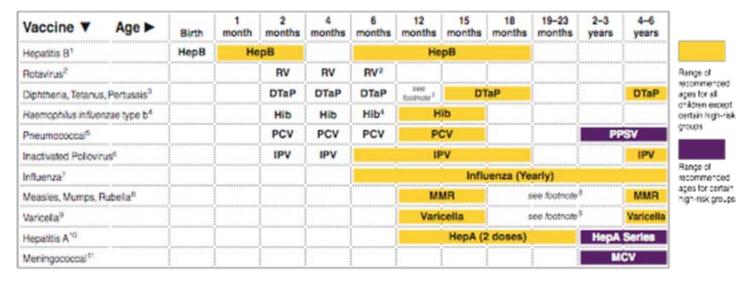
Sancer Vaccines AP

John C. Morris, M.D. Metabolism Branch, Center for Cancer Research, National Cancer Institute


History: terminology

- Variolation- a method of purposefully infecting a person with smallpox virus (Variola) in a controlled manner so as to minimize the severity of the infection and to induce immunity against a full blown smallpox infection.
- Vaccination- the controlled administration of antigenic material (vaccine) to produce immunity to a disease. The word is derived from one of the latin words for cow, "vacca." Cowpox virus (vaccinia) is used to vaccinate against smallpox.


Vaccines

1796: Dr. Edward Jenner - Smallpox vaccine

Recommended Immunization Schedule for Persons Aged 0 Through 6 Years—United States • 2010

For those who fall behind or start late, see the catch-up schedule

Recommended Immunization Schedule for Persons Aged 7 Through 18 Years—United States • 2010 For those who fall behind or start late, see the schedule below and the catch-up schedule

Vaccine V Age	7-10 years	11-12 years	13-18 years
Tetanus, Diphtheria, Pertussis ¹		Tdap	Tdap
Human Papilomavirus ²	see footnote 2	HPV (3 doses)	HPV series
Meningococcal ⁰	MCV	MCV	MCV
Influenza4	Influenza (Yearly)		
Pneumococcal ⁵	PPSV		
Hepatitis A ⁶	HepA Series		
Hepatitis 8 ⁷	Hep B Series		
Inactivated Poliovirus [®]	IPV Series		
Measles, Mumps, Rubella ⁹	MMR Series		
Varicella ¹⁰	Varicella Series		

National Cancer Institute

The Immune System

Innate (non-specific) immune system.

- Primitive- found in animals as ancient as sea sponges
- Granulocytes, monocyte-macrophages, natural killer (NK) cells.
- Complement proteins
- Non-specifically attack and kill targets.
- Have no "memory," thus they confer no long term immunity.

Specific immune system- recognizes and targets specific antigens/epitopes and has memory.

- Humoral immune system- composed of B cells and plasma cells that produce specialized glycoproteins called antibodies that target specific antigens
- Cellular immune system- T cells- immune system regulation and targeted killing.
 - CD4+ T cells: "helper" T cells, T-regulatory cells
 - CD8+ T cells: cytolytic T-lymphocytes (CTL) or "killer" T cells.
- Antigen presenting cells (dendritic cells) bridge the innate and specific immune systems.

Antigen Processing, Presentation, T-cell Activation and Tumor Cell Killing

Immunotherapy of Cancer

Non-specific Immunotherapy

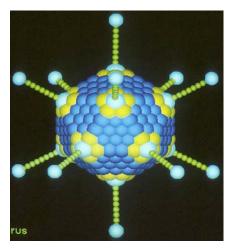
- Coley's toxin (1893), Bacille Calmette-Guérin (BCG), C. parvum
- Adjuvants
 - Imiquimod (Aldara[®])
- Cytokines, Chemokines, and Growth factors
 - Interferons (α , β , γ), interleukin-2, -12, -15, G-CSF, etc.

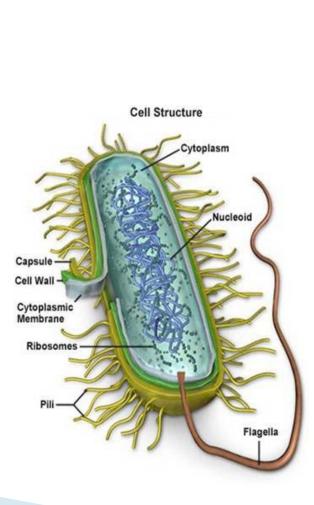
Specific Immunotherapy

- Passive immunization
 - Monoclonal Antibodies- alemtuzumab, cetuximab, rituximab, etc.
 - Immunotoxins- denileukin diftitox (Ontak®), BL22, HA22, LMB-2, Myelotarg®, SS1P
 - Radioimmunotherapy- Bexxar®, Zevalin®, ⁹⁰Y-daclizumab
- Active immunization
 - Cancer Vaccines- Tumor antigen protein, peptides, dendritic cells, tumor cells, gene transfer, virotherapy, radiofrequency ablation (RFA).
 - Adoptive Immune Transfer
 - T cell therapy

Tumor Infiltrating lymphocytes Engineered T cell receptors

William B. Coley, M.D. (1862-1936)




Cancer Vaccines

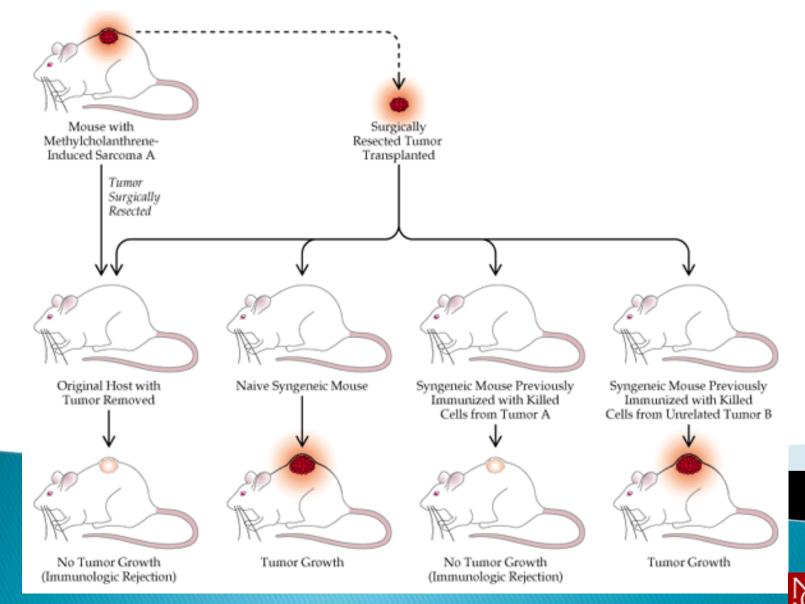
- Prophylactic Vaccines prevent infections that can lead to the development of cancer.
 - Not useful once a cancer is diagnosed:
 - HBV vaccine- prevents chronic hepatitis $B \rightarrow cirrhosis \rightarrow hepatocellular carcinoma.$
 - HPV vaccine- reduces risk of infection with oncogenic HPV genotypes and cervical IEN and invasive cancer.
- Therapeutic Cancer Vaccines used to treat established cancer.
 - Adjuvant- used after primary cancer treatment and patient render clinically free of cancer.
 - HER-2/neu vaccine in HER-2/neu+ resected breast cancer.
 - Therapeutic used once cancer is established
 - Provenge[®] (Sipuleucel-T, Dendreon Corp.)- Prostate cancer

So why is it is difficult to vaccinate against tumors in man?

Mechanisms used by tumors to evade the immune response?

- Immunological tolerance- tumors are often recognized by the immune system as "self" and not as foreign, and therefore not rejected.
 - **Central tolerance** deletion of autoreactive T-cell clones during development.
 - **Peripheral tolerance** number of mechanisms that act as downmodulators of the immune response.
- Tumors employ numerous strategies to hide from the immune system.
 - Decreased MHC class I expression- decreased antigen presentation.
 - Loss of tumor antigens (e.g., CEA, PSA)
 - Loss of co-stimulatory molecules
- Tumor cells employ numerous strategies to attenuate immune responses.
 - Tregs (CD4+CD25+FoxP3+), MDSC's (Gr-1+CD11b+)
 - Increased expression of immunosuppressive cytokines and enzymes-Arginase, TGF- β , indoleamine oxidase, IL-10, VEGF.
 - T-cell "exhaustion" PD-1, PDL-1.

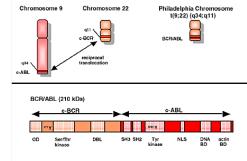
Evidence that cancers are immunogenic


Spontaneous Regression of Cancer

Cancer	No. Cases
Leukemia/Lymphoma	124
Melanoma	69
Renal Cell Carcinoma	68
Neuroblastoma	41
Gastrointestinal Cancer	34
Retinoblastoma	33
Lung & Bronchus	25
Breast Cancer	22
Testicular Cancer	16
Head & Neck Cancer	8
Other Cancers	65
TOTAL	504

PubMed: 1966-1987

Evidence that we can vaccinate against tumors



JNCI 18:769, 1957

What is needed for a successful anticancer vaccine?

Ideal target:

- An antigen that is both necessary and sufficient for cellular transformation (e.g., bcr-abl fusion protein).
- Tumor–specific
- Expressed at high levels.
- Accessible to the immune system.

- Effective vaccine- antigen delivery system: vehicle/vector, route and schedule.
 - Capable of inducing strong and lasting immunity.
 - Induces CD8+ cytolytic T-cell responses?

What do we need for a successful anti-cancer vaccine?

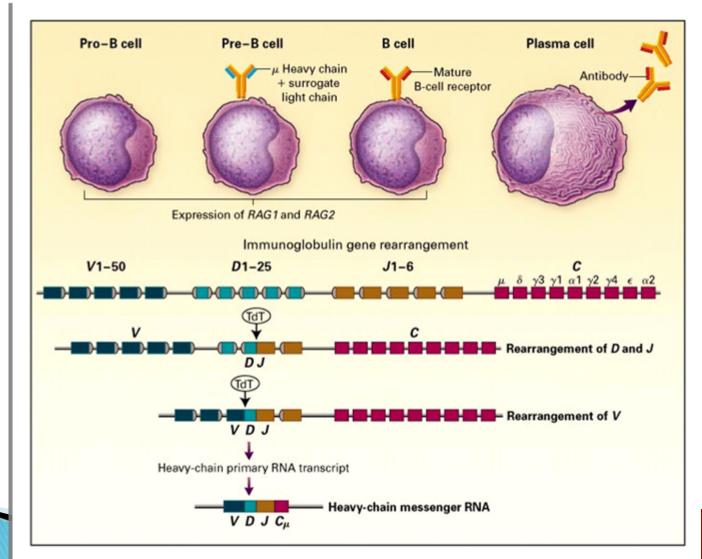
- Accurate methods to monitor the effectiveness of the vaccine.
- Active and safe adjuvants:
 - Enhances immunogenicity of the vaccine.
- Ease of manufacture, reasonable costs, and patient acceptance.

Antigen Targets for Cancer Vaccines

- Tumor specific antigens (TSA) unique and specific.
 - Unique fusion proteins: CML- bcr-abl, sarcomas-EWS/FLI-1
 - Oncogenic viral proteins:
 - Cervix cancer- HPV E6/E7.
 - Burkitt's lymphoma EBV EBNA-1.
- Tumor-associated antigens (TAA)
 - Mutated normal proteins: MAGE-1, K-ras, p53
 - Over expressed normal proteins: HER-2/*neu*, EGFR
 - Post-translational antigen modifications: MUC-1 glycosylation.
 - Genes read in alternate reading frames: TARP

Targets for Tumor Vaccines

Overexpressed Antigens


Cell Cycle Regulators		
Cyclins D1, E	Breast, colon, head & neck,	
mdm-2	Sarcoma, leukemia, glioma	
Receptor Tyrosine Kinases		
Epidermal growth factor receptor	Lung, head & neck, glioma	
ErbB2 (HER-2/ <i>neu</i>)	Breast, ovarian, stomach	
ErbB3	Breast, colon, pancreas	
Fibroblast growth factor receptor I	Glioma, melanoma, pancreas	
Insulin-like growth factor receptor II	Breast, lung, ovarian	
c-MET	Ovarian, thyroid	
Nuclear Oncogenes		
c-, L-, N-myc	Breast, neuroblastoma, SCLC	
Anti-apoptotic Proteins		
Telomerase	Stomach	
Bcl-2	Non-Hodgkin's lymphoma	

Targets for Tumor Vaccines

Mutated Antigens

Fusion Proteins	Tumor	
Bcr-abl	Chronic myelocytic leukemia	
EWS/FLI1	Sarcomas	
BcR idiotype	Follicular lymphoma	
Point mutations		
p53	Lung, head & neck, pancreas	
K-ras	Lung, pancreas, GI	
MAGE-1	Melanoma	
Oncogenic viral proteins		
HPV E6/E7	Cervix, oropharyngeal	
Oncofetal antigens		
AFP	Hepatocellular, testicular	
CEA		
Non-essential tissue specific antigens	NATIO	
PSA, PSMA, PAP	Prostate	

BcR idiotype antigen

Peptide vaccines

- Immunodominant peptides (e.g., gp100, MART-1melanoma, p53- lung cancer, K-ras- colon cancer).
 - Advantages:
 - Targets a single or small number of specific epitope(s).
 - Easy to manufacture and QA/QC
 - Easy to assay immune responses in CTL or ELISPOT assays.
 - Disadvantages
 - Limited to certain HLA types (e.g., HLA-A2 <50% population)
 - Vaccinating for a limited number of epitopes
 - May require unacceptably frequent vaccination to induce an meaningful immune response.
 - May be combined with other approaches (e.g., peptide loaded dendritric cells).
 - May be modified to enhance MHC affinity (epitope enhancement).

Whole protein vaccines

- Uses the entire antigen.
- May be purified from tumor cells, expressed in recombinant systems in vitro, or in a tumor cell lysate.
- Advantages:
 - Multiple epitopes
- Disadvantages
 - Potential for allergic reactions and autoimmunity.
 - Not very successful.

Gene-based antitumor vaccines

- Expresses the antigen gene
- Expression plasmids
 - Easy to manufacture
 - Low levels of expression.
- Recombinant viral vector or plasmid-based gene transfer
 - Adenovirus
 - Pox virus (avipox, vaccinia, etc.)
 - Retrovirus (Molony virus, lentivirus)
 - Others

Advantages:

- Express entire antigen (multiple epitopes)
- Viral proteins may act as adjuvants boosting response.
- May be combined with other approaches.
- May express multiple antigens.

Whole Cancer Cell Vaccines

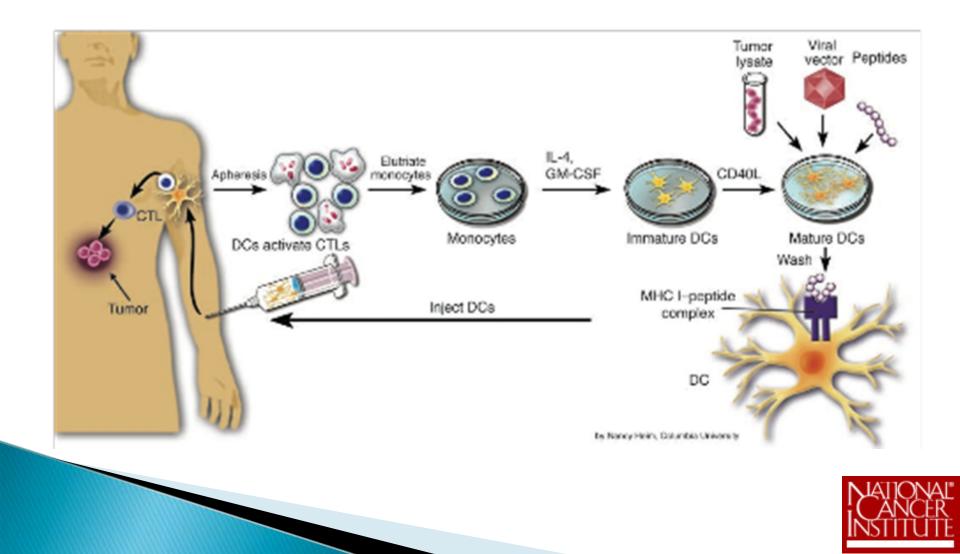
- GVAX (Cell Genysis), Lucanix (NovoRx), HyperAcute (NewLink), etc.
- Autologous vs. Allogeneic
- Unmodified
- Modified
 - Irradiated
 - increases MHC class I expression
 - Safety
 - Gene–modified
 - Express co-stimulatory proteins (B7) or immunostimulatory cytokines
 - Immunogenic proteins

Dendritic Cell Vaccines

- Generated by various methods
 - Most common uses peripheral blood monocytes and GM-CSF

Advantages:

- Most powerful antigen presenting cells
- Can be loaded with target antigen by various means
- Disadvantages:
 - Immature or non-activated DC may be tolerizing
 - Requires specialized facilities cell processing, flow cytometry



Antigen loading of dendritic cells

- Tumor antigen peptides
- Whole tumor protein
- Tumor protein lysates
- Tumor apoptotic bodies
- mRNA electroporation
- Plasmid DNA transfection
- Viral gene transfer
- Tumor cell-DC fusions

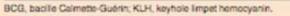
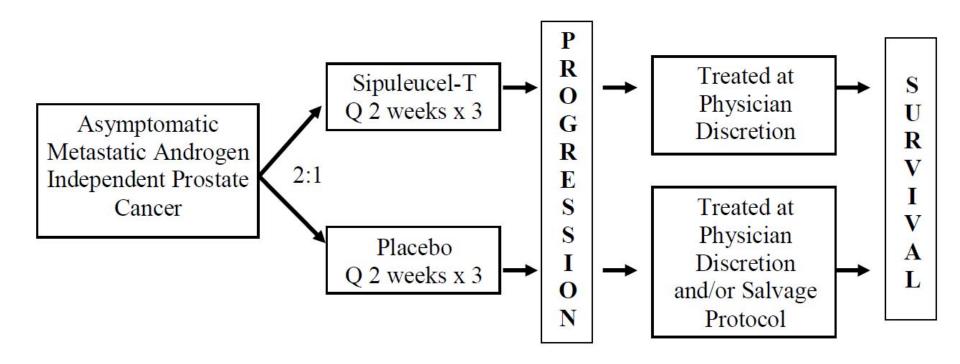
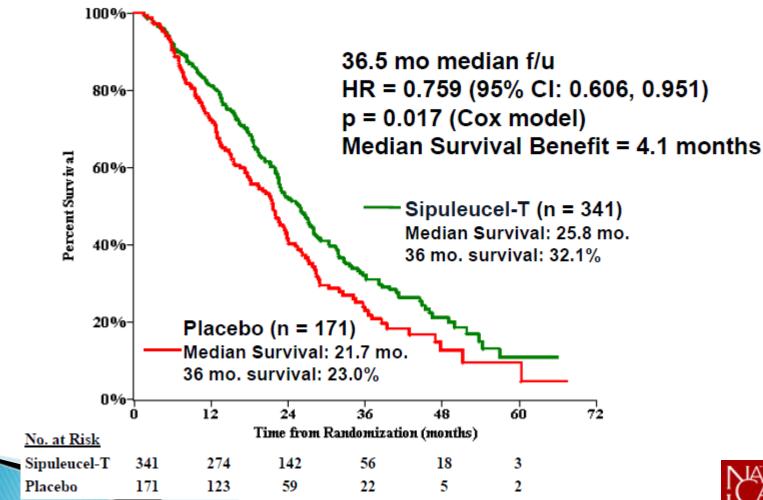

Dendritic cell vaccines

Table 1


Antitumor vaccines in clinical trials

Vaccine	Advantages	Disadvantages
Whole tumor cell	Studied extensively Can be processed to enhance antigen presentation (e.g., irradiated tumor cells or tumor lysates); Can be administered with adjuvants (e.g., BCG, KLH, viruses, etc.); Likely to express the relevant tumor antigens; Antigens need not be defined	 Requires availability of autologous tumor or an allogeneic cell line sharing the relevant tumor antigens; Poor ability to stimulate immune responses; Few responses and little benefit reported when used adjuvantly in randomized clinical trials
Gene-modified tumor cells	Likely to express the relevant tumor antigens; Antigens need not be defined; Otten engineered to coexpress immunostimulatory molecules and cytokines (e.g., GM-CSF, IL-2); Use of allogeneic tumor cell lines and fibroblasts are under investigation as an approach to accelerate vaccine production; Some immunological and clinical responses reported	 Requires availability of autologous tumor or an allogeneic cell line expressing the relevant tumor antigens; Weak antigen presentation by many tumors; Long manufacturing time; Need for ex vivo cell culture; Cost, time, and labor intensive
Plasmid (naked) DNA	 Constructed to express the relevant tumor antigen; Easy to produce and stable; Can be administered as a direct injection or biolistically ("gene gun") 	 Requires detailed knowledge of the antigen DNA sequence Low immunological potency for self (tumor) antigens; Response may be Th2 skewed; High doses of plasmid DNA are required to generate immune responses
Peptides	 Can limit immune response to epitopes distinct from the wild type (e.g., point mutations or breakpoint-fusion genes). Epitopes can be enhanced; Easy to produce and stable; Can be combined as cocktails of peptides; Some immunological and clinical responses reported 	 Requires knowledge of the specific epitope; Immunogenicity restricted to a limited number of MHC molecules; Usually requires the addition of an adjuvant for immunogenicity
Viral gene transfer vectors	Engineered to express the relevant tumor antigen; Can be engineered to coexpress immunostimulatory molecules and cytokines; Wide variety of available vectors (e.g., adenovirus, pox viruses, lentiviruses, etc.); Some cellular immune responses reported	 Immunodominance of viral antigens over tumor antigens; Weak antitumor responses seen with most viral vectors; Preexisting immunity against viral vectors may attenuate the antitumor response; Risk of toxicity with "live" viruses
Antigen-modified DOs	Luse of powerful APCs; Z. Techniques available to generate large numbers of clinical grade DCs; S. Target antigens may be defined or uncharacterized; Multiple antigen loading techniques (e.g., peptide, lysates, whole protein, RNA transfection, viral vectors, etc.) are available; S. Some immunological and clinical responses reported	 Need for ex vivo cell culture; Cost, time, and labor intensive; Optimal technique for antigen loading remains undefined; Possibility of tolerization by immature DCs; Lack of criteria for standardization of final product



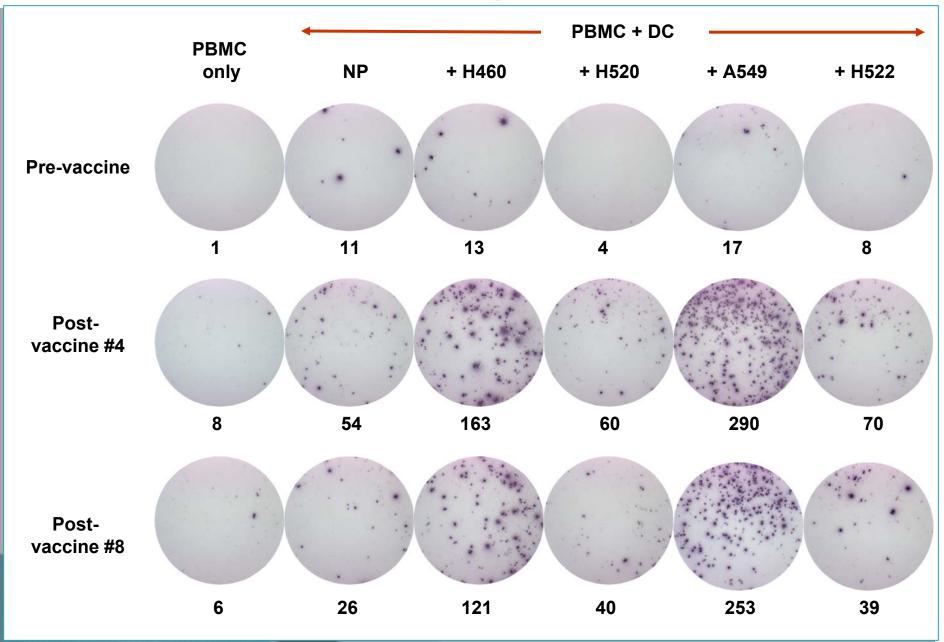
Phase III clinical trial of Provenge™ (Sipuleucel–T)

IMPACT Overall Survival Final Analysis (349 events)

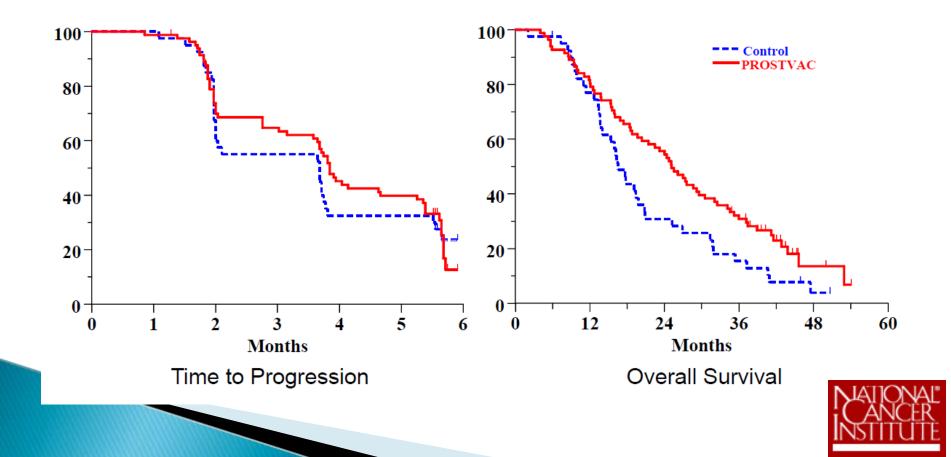
How should we administer cancer vaccines for the best effect?

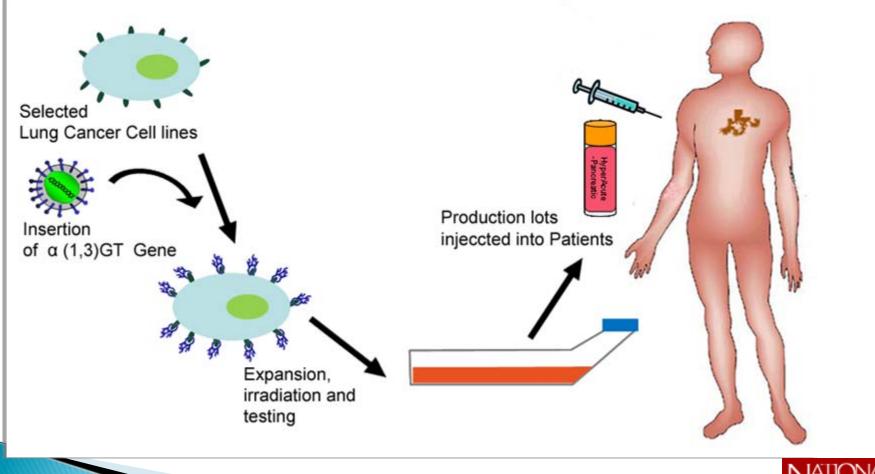
Route of vaccination

- Intramuscular
- Intradermal
- Subcutaneous
- Intravenous
- Intraperitoneal
- Intralymph node
- Intratumoral
- oral
- Best schedule of vaccination- not really known and may vary with the vaccine.

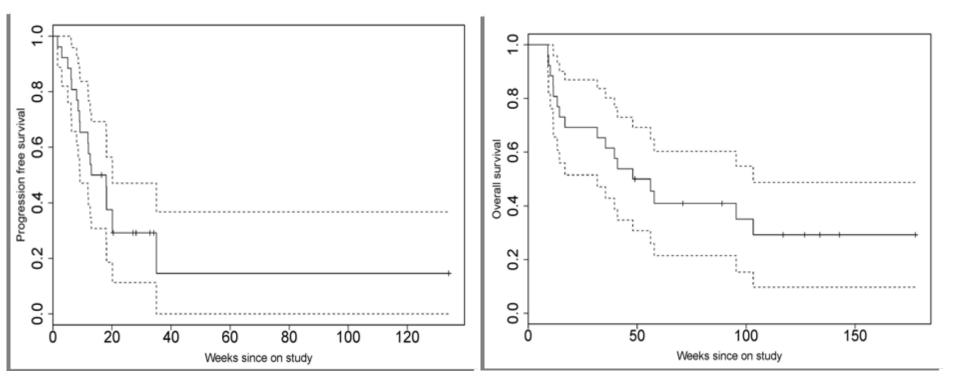


How do we assess the effects of our vaccination?


- Antibody titers?
- Cytolytic T-cell (CTL) assays?
- ELISPOT assays?
- Tetramer assays?
- Response rate (tumor regression RECIST)?
- Progression-free survival?
- Over-all survival?
- Other?

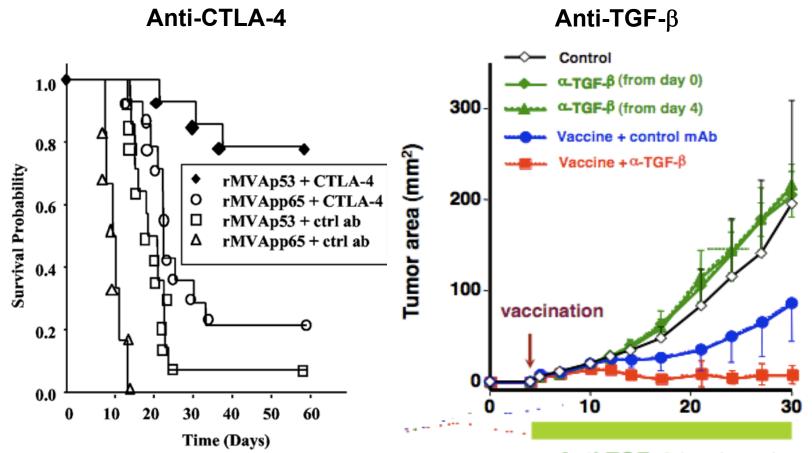

ELISPOT ASSAY- Count the spots

Prostvac-VF Randomized Phase 2 Progression vs Overall Survival (N=122)



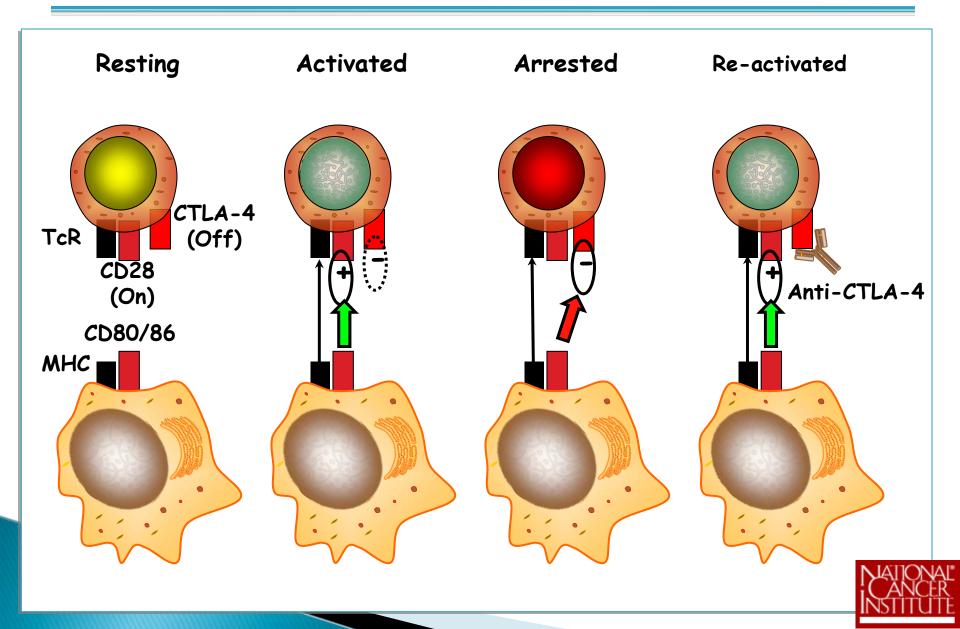
HyperAcute Lung Cancer Vaccine

HyperAcute Lung Cancer Vaccine

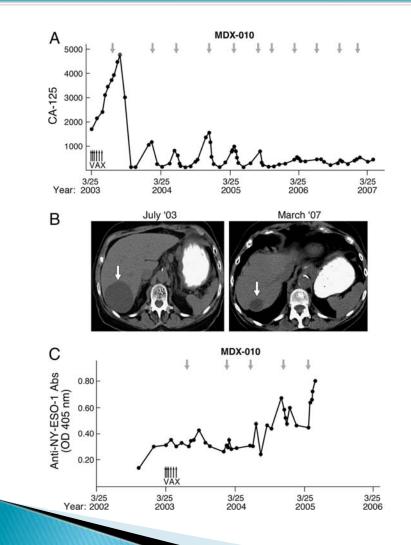

Negative immune system regulators

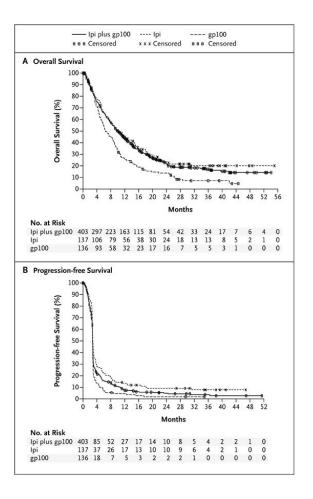
- T-regulatory cells (Tregs)
- Cytotoxic lymphocyte antigen-4 (CTLA-4)
- Transforming growth factor-beta (TGF- β)
- Interleukin-10
- Programmed death-1 (PD-1)/PDL-1
- Indolamineoxidase (IDO)

Effect of negative immune regulatory checkpoint blockade on anti-tumor vaccination



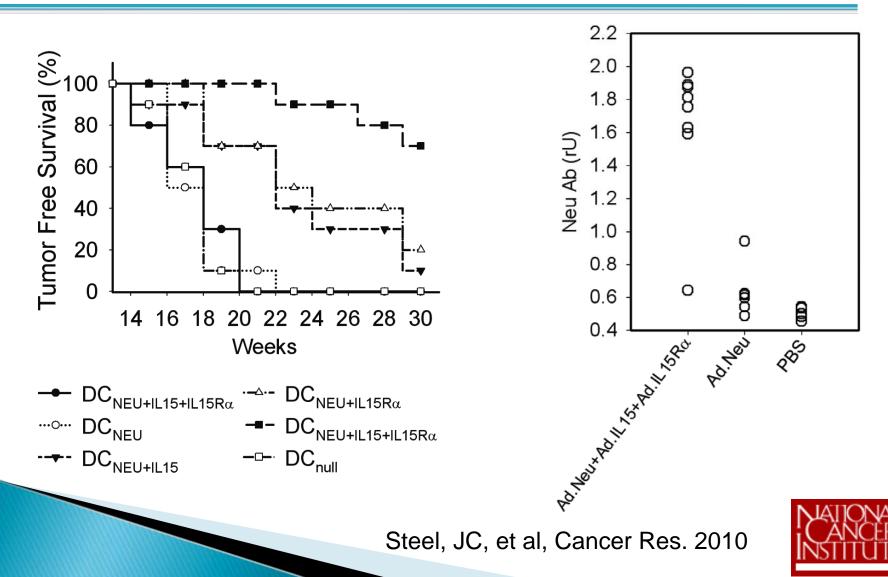
Anti-TGF–β treatment


Days after tumor injection



CTLA-4 turns off T-cells

Clinical effect of ipilumumab (anti-CTLA-4) on anti-tumor vaccination



Hodi F S et al. PNAS 2008;105:3005-3010 Hodi F et al. N Engl J Med 2010;10.1056.

Effect of interleukin-15 on Neu (HER-2/ neu) vaccine efficacy in breast cancer

So where do we go from here?

- It is doubtful that anti-cancer vaccines themselves can be greatly improved upon.
- The future focus will likely be on enhancing the vaccines' activity:
 - Improved administration schedules
 - Negative immune checkpoint blockade
 - Addition of immunostimulatory cytokines/chemokines.
 - Improved immunomonitoring
 - Patient selection.

