Overview of Neurofibromatosis Type 1

Andrea Gross, MD

December 7, 2022

1

Overview

- 1. Neurofibromatosis Type 1
- 2. Plexiform Neurofibromas (PN)
- 3. Atypical Neurofibromas

NIH NATIONAL CANCER INSTITUTE
Center for Cancer Research

● @NCIResearchCtr

Neurofibromatosis Type 1

- Autosomal dominant inheritance
 - Complete penetrance
 - Highly variable phenotype
- · Spontaneous mutations in approximately 50% of cases
- Mutation in NF1, tumor suppressor gene on chromosome 17q11.2 (RAS pathway activation)

Autosomal dominant inheritance

Korf BR, Bebin EM. Pediatr Rev. 2017; Korf BR. Handb Clin Neurol. 2013. 🔰 @NCIResearchCtr

3

Updated NF1 Diagnostic Criteria

Need ≥2 if no parent with NF1; ≥1 if a parent with NF1

Diagnostic Criteria

≥ 6 café-au-lait macules (>5 mm pre-pubertal, >15 mm post-pubertal)

Freckling in the axillary or inguinal region

Two or more neurofibromas of any type or one plexiform neurofibroma

Optic Pathway Glioma

≥2 Lisch nodules on slit lamp exam or ≥2 choroidal abnormalities

Distinctive Osseus Lesion (sphenoid wing dysplasia, anterolateral bowing of tibia, long bone pseudoarthrosis)

Heterozygous pathogenic *NF1* variant allele fraction of ≥ 50% in normal tissue

Legius et al, Genetics in Medicine 2021

■ @NCIResearchCtr

Café au Lait Macules

- Obvious during first 2 years of life
- Macular, regular border, homogenous pigmentation

NIH NATIONAL CANCER INSTITUTE
Center for Cancer Research

● @NCIResearchCtr

Skinfold Freckling

- Appears during first 5 years of life
- Axillary (64-84%), inguinal (52-56%), trunk, neck, submammary region

(Mautner 2022)

@NCIResearchCtr

7

Cutaneous Neurofibromas

- Do not usually develop until preadolescence:
- Frequency:

NATIONAL CANCER INSTITUTE
Center for Cancer Research

< 10 years: 14%10-19 years: 44%20-29 years: 85%>30 years: 94%

- Earlier onset predicts for more severe cutaneous manifestations
- Increase during puberty and pregnancy
- Major cosmetic problem
- No malignant transformation

@NCIResearchCtr

Lisch Nodules

- Dome shaped elevations on the surface of the iris hamartomas
- Pathognomonic of NF1
- Frequency: 22% at 5 years, 96-100% at 20 years

● @NCIResearchCtr

0

Osseus Lesions

- Sphenoid Wing Dysplasia
- Long bone dysplasia/ Tibial Pseudoarthrosis
 - Congenital; 5% of patients with NF1

@NCIResearchCtr

10

NIH NATIONAL CANCER INSTITUTE
Center for Cancer Research

NF1 Scoliosis

- Idiopathic and Dystrophic types
- Dystrophic: Short segmented, sharply angulated wedged vertebrae, apical rib penciling
- Frequency: 15% to 20%, surgery required 5%

 04-2003
 02-2004
 04-2005
 04-2006
 09-2006
 02-2007

11

NF1: Signs and Symptoms Timeline

NF1 Oncologic Manifestations

- T2 Hyperintensities (Spongiform gliosis, UBO's)
- Optic pathway gliomas (15-20%)
- Gliomas (cerebellar, cerebral, brain stem) (1.2%)
- Spinal neurofibromas (spinal cord compression)
- Malignant Peripheral Nerve Sheath Tumor (MPNST) (5-13%)
- Plexiform neurofibroma (25%)
- Pheochromocytoma (1%), Gastrointestinal Stromal Tumors (GIST)
- Glomus tumors
- Other malignancies (JMML, RMS)

● ©NCIResearchCtr

13

NF1 Optic Pathway Gliomas

- Most common CNS tumor in NF1 (15-20%)
- Age at presentation: Median 4.9 years, new tumors after 6 years of age are rare
- Symptoms:
 - Decreased visual acuity, visual field defects, proptosis, strabismus, optic atrophy, HA, nausea, anorexia, hypothalamic dysfunction/ precocious puberty
 - Only 30-50% of these tumors become symptomatic
- Pathology: Pilocytic astrocytoma (WHO grade I)

Image courtesy of Sepehr Haghighi, Radiopaedia.org, rID: 64709

■ @NCIResearchCtr 14

NF1 Optic Pathway Gliomas (continued)

- Natural history:
 - Progression is infrequent after diagnosis
 - Spontaneous regression
- Treatment: Not necessary for most patients
 - For patients with progressive neurological, visual or radiographic disease
 - Chemotherapy: Carboplatin and vincristine (standard regimen)
 - Ongoing trial comparing MEKi to standard chemotherapy up-front
 - Avoid XRT, if possible
- Screening:
 - Ophthalmologic examination: Yearly until 6 years
 - MRI: Utility for screening questioned

● @NCIResearchCtr 15

15

Malignant Peripheral Nerve Sheath Tumor (MPNST)

- Highly aggressive soft tissue sarcoma
- Most common malignancy in NF1
- Lifetime risk: 8-13%
- Treatment:
 - Local control: ESSENTIAL wide resection with negative margins; radiation therapy
 - <u>Chemotherapy</u>: Ifosfamide/ Doxorubicin/ Etoposide

● @NCIResearchCtr

Pathology photo courtesy of Miettinen

17

Plexiform Neurofibromas (PN)

- Histologically benign
- Involve multiple nerve fascicles/branches
- Schwann cells, fibroblasts, mast cells, highly vascular
- Young age, slow growth, large size, complex shape
- · Disfigurement, pain, functional impairment, life-threatening
- Transformation to malignant peripheral nerve sheath tumor (MPNST) (10-15%)

Klesse LJ, et al. Oncologist. 2020; Kim A, et al. Sarcoma. 2017; Korf BR. In: Advances in Neurofibromatosis Research. 2012.

Volumetric MRI Analysis of PN

• Volumetric MRI is the standard methodology for measuring PN on clinical trials (REiNS)

STIR Sequence

Region of Interest

Tumor border identified Response Criteria:

- - Partial Response (PR): ≥ 20% decrease in tumor volume
 - Progressive Disease (PD): ≥ 20% increase in tumor volume from best response

Dombi E, et al. Neurology. 2013; Solomon J, et al. Comput Med Imaging Graph. 2004; Gross AM, et al. N Engl J Med. 2020.

19

Example of Line and Volume Measurements

Baseline

12 Months

27 Months

Natural History of PN Growth

- NCI NF1 Natural History Study
- PN Growth Rate:
 - PN grow most rapidly in young children
 - No spontaneous PN shrinkage >20% per year
- PN-Related Morbidity
 - · Most PN cause some degree of morbidity at time of first assessment
 - Once PN-related morbidity develops in growing PN, it is very unlikely to resolve spontaneously, thereby reinforcing the need for early intervention

Akshintala S, et al. Neuro Oncol. 2020; Gross AM, et al. Neuro Oncol. 2018.

● WCIResearchCtr

21

Surgery and Radiation Therapy for PN

- Surgical resection of PN can be a dangerous procedure with risk for significant blood loss
- Younger patients and incomplete resection associated with increased risk of tumor regrowth
- Small retrospective case studies have shown radiotherapy can shrink tumors, however it leads to significant increases in risk of malignant transformation therefore generally **NOT** recommended

Fig. 3. Kaplan-Meier estimates of the proportion of patients without development of tumor progression ed on the extent of resection as assessed by the operating surgeon (n = the total number of tumors in

Needle MN, et al. J Pediatr. 1997; Canavese F, et al. J Pediatr Orthop. 2011; Wentworth S, et al. Int J Radiat Oncol Biol Phys. 2009; Grill J, et al. Int J Radiat Oncol Biol Phys. 2009; Chopra R, et al. Am J Clin Oncol. 2005.

NATIONAL CANCER INSTITUTE Center for Cancer Research

■ @NCIResearchCtr

Phase I Trial of Selumetinib

- Taken twice daily on a continuous dosing schedule (1 cycle = 28 days)
- Primary Objective: Define the maximum tolerated dose (MTD) of selumetinib for pediatric patients with inoperable PN
- First treatment to show shrinkage of plexiform neurofibromas in NF1
 - Partial response in 17/24 patients Responses at ~60% of adult recommended dose

Anecdotal clinical benefit but no prospective functional measures in this study Dombi E, et al. N Engl J Med. 2016. NATIONAL CANCER INSTITUTE **Center for Cancer Research**

y @NCIResearchCtr

25

Phase 2 Trial: Selumetinib in Children with NF1 PN

- Primary objective: Overall Response Rate
- **Key Secondary Objectives:**
 - Functional and Patient Reported Outcomes
- - Confirmed Partial response 34/50 (68%) patients
 - Clinical benefit with improvement in pain and function

Baseline

Percent Reported

Pre-Cycle 13 Pre-Cycle 37

Global Impression of Change (GIC) in Tumor-related Morbidities at Pre-cycle 13 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Parent report GIC Child self-report GIC

86% improvement 72% improvement **y** @NCIResearchCtr Gross AM, et al. N Engl J Med. 2020.

Safety and Tolerability of Selumetinib

- · All subjects had at least 1 selumetinib related toxicity
 - Majority (97%) were mild (grade 1 or 2)
- All toxicities were reversible
- Most common toxicities:
 - Gastrointestinal (nausea, vomiting, diarrhea)
 - CPK Increase (asymptomatic)
 - Rash
 - Paronychia
- As of 2/27/21, median 55.5 cycles treatment
 - 5 of 50 subjects off treatment for drug-related adverse event

12/7/2022

Regulatory Agency Approval of Selumetinib (Koselugo™)

April 10, 2020

"The Food and Drug Administration (FDA) approved selumetinib for the treatment of pediatric patients 2 years of age and older with neurofibromatosis type 1 (NF1) who have symptomatic, inoperable plexiform neurofibromas (PN)."

April 22, 2021:

"Committee for Medicinal Products for Human Use (CHMP) adopted a positive opinion, recommending the granting of a conditional 1 marketing authorisation for the medicinal product Koselugo2, intended for the treatment of paediatric patients with neurofibromatosis type 1 (NF1) plexiform neurofibromas (PN)."

> FDA Prescribing Information; FDA Press Release, April 10, 2020. https://www.ema.europa.eu/en/medicines/human/summaries-opinion/koselugo (April 22, 2021) 33

33

Regulatory Agency Approval of Selumetinib (Koselugo™) - October 2022

- 1. USA
- 2. Brazil
- 3. United Arab Emirates
- 4. South Korea
- 5. European Union (27 member countries)
- 6. Israel
- 7. Singapore
- 8. Great Britain
- India
- 10. Mexico
- 11. Russia
- 12. Australia
- 13. Taiwan
- 14. Hong Kong
- 15. Switzerland
- 16. Japan

● @NCIResearchCtr

Other Treatments For PN:

- Other MEK Inhibitors have caused PN shrinkage:
 - Binimetinib
 - Trametinib
 - Mirdametinib
- Cabozantinib: Multireceptor Tyrosine Kinase Inhibitor (TKI)
 - First non-MEK inhibitor to show tumor shrinkage

35

What's Next for Plexiform and Atypical Neurofibromas?

- Combination trials to try to improve the amount of PN tumor shrinkage
- Alternative dosing schedules to try to decrease side effects
- Prevention study should we be treating young children with PN BEFORE they develop symptoms?
- Other treatment options for atypical neurofibromas?

● @NCIResearchCtr

T2 Hyperintensities (aka Spongiform Gliosis, UBOs)

- Increased signal intensity on T2 weighted MR images (60%-70%)
- Isointense on T1 weighted MRI no mass effect, no contrast enhancement
- Pathology: Dysplastic glial proliferation, vacuolation of myelin sheets
- Location: Basal ganglia, optic tract, brainstem, cerebellum
- Clinical significance: No clear association with cognitive defects
- Spontaneous resolution in 2nd to 3rd decade

● ©NCIResearchCtr

41

Pre-Clinical Models of Plexiform Neurofibromas

Wu J. et al. Cancer Cell. 2008; Yang FC, et al. Cell. 2008; Jessen WJ, et al.

- Genetically engineered mouse models of NF1 neurofibroma predict for activity
- MEK Inhibitor (MEKi) is first active therapy

Mouse Neurofibromas

DhhCre;Nf1fl/fl

Krox20:Nf1flox/flox

● ● NCIResearchCtr

Few Genotype-Phenotype Correlations in NF1

Genotype	Phenotype
1.4 Mb microdeletion	Coarse face, ptosis, hypertelorism, broad nose, multiple neurofibromas, ADHD, cognitive impairment, macrocephaly, heart defects, connective tissue dysplasia, scoliosis, pectus, bone cysts, and increased risk for malignancy (i.e., MPNST)
Missense mutations in NF1 codons 844–848	Higher risk for OPGs, plexiform neurofibromas, spinal neurofibromas, superficial neurofibromas, and higher risk for scoliosis and skeletal anomalies
NF1 pMet992del	Mild phenotype—café-au-lait and freckling only
NF1 codon 1809 missense mutations	Café-au-lait, learning delays, and pulmonic stenosis (Noonan features), but lower risk of plexiform neurofibromas and OPG

Kayes LM, et al. Am J Hum Genet. 1994; Koczkowska M, et al. Am J Hum Genet. 2018; Koczkowska M, et al. Genet Med. 2019; Rojnueangnit K, et al. Hum Mutat. 2015.

43

Characterization of Atypical Neurofibromas Distinct imaging, clinical, and genomic (CDKN2A loss) characteristics Pathology: **Distinct nodular lesion** · Atypia, · Loss of neurofibroma architecture Mitosis · Increased cellularity • ANNUBP: Age 10y 10m **A**typical Neurofibromatous **Distinct Nodular** Dominant PN Neoplasm of Lesions N=61 N=70 Uncertain **B**iologic 200 **P**otential

Age at initial MRI (years)

Akshintala S...Widemann B: Neuro Oncol 2020

Reilly K...Stewart D: JNCI 2017

Miettinen M...Perry A: Humpath 2017

NF1 Juvenile Myelomonocytic Leukemia (JMML)

- Rare myeloproliferative disorder of early childhood (<1% of all childhood leukemias)
- Clinical diagnosis of NF1 in 10% to 14% of children with JMML
- Activating RAS mutations in 18-25%(not in NF1)
- NF 1 mutations in approximately 30% of patients with JMML
- Hypersensitivity to GM-CSF
- GM-CSF stimulation associated with elevated ras-GTP
- Only HCT has resulted in extended survival
- Ongoing clinical trial with MEK inhibitors

@NCIResearchCtr

45

45

Distinct Nodular Lesions

- Distinct Nodular Lestions (DNL):
 - Identified by imaging
 - Round/oval, well demarcated, ≥ 3 cm,
 - Within or outside a PN
 - Often FDG-Avid
 - Growth rates different from PN

NIH NATIONAL CANCER INSTITUTE Center for Cancer Research

280

200

Growth rate % change/yr

Distinct Nodular Lesion

(Figures from Akshintala 2020)

@NCIResearchCtr

Atypical Neurofibromas

- Atypical Neurofibromas (ANF): Histopathologic diagnosis based on nuclear atypia, hypercellularity, loss of neurofibroma architecture and rare mitosis
 - MAY be Distinct Nodular Lesion on imaging (but not always!)

Pathology of ANF:

- Atypia
- · Loss of neurofibroma architecture
- Mitosis
- Increased cellularity Center for Cancer Research

ANNUBP: At least 2 of the ANF pathology features

- **A**typical
- Neurofibromatous
- Neoplasm of
- **U**ncertain
- **B**iologic
- **Potential**

■ @NCIResearchCtz0147

ANF management- an unmet need for clinical trials

- ANF Require close observation and imaging with MRI and FDG-PET
- Recommendations of recent consensus conference:
 - Surgical resection IF feasible without substantial morbidity
 - Due to locations, often cannot be easily surgically removed
 - Patients may have multiple ANF
- No previous clinical trials specifically targeting ANF have been conducted

49

Phase I/II Study of the Cyclin-Dependent Kinase (CDK)4/6 Inhibitor Abemaciclib for Neurofibromatosis Type 1 (NF1) Related Atypical Neurofibromas (ANF)

- Primary Objectives
 - Phase I: To determine the recommended Phase II dose (RP2D) of abemaciclib in patients with NF1 and a measurable ANF
 - Phase II: To determine the objective response rate (ORR) in the target ANF; complete and partial response (CR + PR), response determined by volumetric MRI analysis (≥ 20% volume reduction) compared to baseline
- Key Eligibility Criteria:
 - ≥12 years old with NF1
 - Presence of ≥ 1 atypical neurofibroma, biopsy confirmed
- Goal Sample Size: 27 subjects
- Study Status: ENROLLING!

