Pathway-Directed Treatment Strategies in Kidney Cancer

Ramaprasad Srinivasan, M.D., Ph.D.
Head, Molecular Cancer Section
Urologic Oncology Branch
Center for Cancer Research
National Cancer Institute
Human Renal Epithelial Neoplasms

- Clear Cell
 - \(VHL \)

- Papillary Type 1
 - \(Met \)

- Chromophobe

- Hybrid
 - \(FLCN \)

- Papillary Type 2
 - \(FH \)

- TFE3
 - \(TFE3, TFEB, MITF \)

- Angiomyolipoma
 - \(TSC1, TSC2 \)

- Oncocytic
 - \(SDHB, SDHC, SDHD \)

- Clear/Chromophobe
 - \(PTEN \)
Renal Cell Carcinoma (RCC)
> 65,000 US/yr
~14,000 deaths US/yr

Clear Cell RCC
~75%-80%

Papillary RCC
~15%

Chromophobe RCC
<5%

Others
<5%

Type 1

Type 2
(Non Type 1)
Clear Cell RCC

- Most common RCC subtype
- Biology and molecular mechanisms better understood than other RCC subtypes
- Characterized by loss of function of \textit{VHL} gene (90%)
- Majority of patients enrolled on contemporary RCC trials have clear cell RCC
Clear Cell Renal Carcinoma
von Hippel Lindau (VHL)

Sporadic

Inherited
VHL Clinical Features

- Tumors develop in:
 - Both Kidneys
 - Adrenal Glands
 - Pancreas
 - Brain or Spine
 - Eyes
 - Inner Ears
von Hippel-Lindau (VHL): Multiple Clear Cell Renal Carcinomas

Multiple Renal Cysts Containing RCC

Clear Cell RCC

J Urol 153:1995
Germline VHL Mutations
Sporadic Clear Cell RCC
Somatic VHL Gene Mutations
HIFα is targeted for degradation in normoxic, but not hypoxic cells.

Normoxia

- VHL
- β-domain
- α-domain
- HIF-α
- Degradation

Hypoxia

- VHL
- β-domain
- α-domain
- HIF-α
- Accumulation
- VEGF
- Glut 1
- PDGF
Targeting the VHL Pathway in Sporadic Clear Cell RCC

VHL Protein

- \(\beta \) domain

HIF

- mTOR

- VHL Complex Disrupted

Bevacizumab (Antibody)

- VEGF
 - VEGFR
 - Axitinib
 - Pazopanib

- PDGF
 - PDGFR
 - Sunitinib
 - Sorafenib

- HGF
 - MET
 - Cabozantinib

Tensirolimus

PDGF

- PDGFR

VHL Associated Tumors: Principles of Management

• Local Control: Surgery/Ablation
 – Minimize the risk of metastases (RCC, PNET, pheochromocytoma)
 – Control of local symptoms (CNS, retinal, ELST) or systemic complications (pheochromocytoma)

• Metastatic Disease: Systemic Therapy
 – No dedicated/VHL-specific studies
 – Management derived from standard of care for sporadic tumors
Why Should We Explore Alternative Treatment Strategies?

• Current therapy associated with significant morbidity

 – Multiple surgeries during a patient’s lifetime
 – Perioperative complications from surgery
 – Gradual loss of renal function, pancreatic or adrenal insufficiency
 – Neurologic deficits

• Lifelong risk of developing new lesions
Systemic Therapy: Alternative to Surgery?

• Goals of Therapy

 – Delay or avoid surgery
 • Prevent tumor growth or reduce tumor size
 • Prevent new tumors
 – Prevent distant spread/metastasis
 – Improve quality of life
 – Preserve function
 – Acceptable short and long term side effects
Systemic Therapy in VHL

- Inhibitors of angiogenesis/VEGFR
 - Sunitinib (Jonasch, MD Anderson)
 - Pazopanib (Jonasch, MD Anderson)
 - Vandetanib (Srinivasan, NCI)

- Targeting HIF
 - 17 AAG (Srinivasan, NCI)
 - PT2385 (Srinivasan, NCI)
 - PT2977 (Multicenter, Peloton Therapeutics)
Targeting VHL/HIF in Clear Cell RCC: Phase 2 Study of Vandetanib
Vandetanib in VHL

Study Design

• Single arm, open label phase 2 study

• Diagnosis of VHL and a measurable renal tumor

• Primary Endpoint
 – RECIST Response rate in renal tumors

• Assess response by RECIST q 12 weeks
Best Response in 37 Patients with VHL-RCC Treated with Vandetanib
37 year old with VHL

Baseline

On Vandetanib
High Rate of Discontinuation Due to Side Effects

<table>
<thead>
<tr>
<th>Reason for Discontinuation</th>
<th># of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/PI Choice</td>
<td>11 (27%)</td>
</tr>
<tr>
<td>Grade 3-4 Toxicity</td>
<td>13 (35%)</td>
</tr>
<tr>
<td>Disease Progression</td>
<td>13 (35%)</td>
</tr>
</tbody>
</table>
Phase 2 Study of Pazopanib in VHL

- 31 patients with renal, CNS or pancreatic tumors

- Pazopanib given for 12 weeks (could be extended if clinical benefit)

- 13 pts (42%) demonstrated a response

- Toxicity/ Intolerability a major issue
 - 18/31 (58%) patients discontinued
 - 1 patient died from a CNS hemorrhage
 - 7 pts discontinued due to severe toxicity (including 4 due to elevated transaminases)
 - 11 patients withdrew (patient choice)

Jonasch et al, ASCO, 2017
VEGFR TKI: Summary

<table>
<thead>
<tr>
<th>Activity</th>
<th>Pazopanib</th>
<th>Vandetanib</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>PNET</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>CNS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pheo, ELST</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Tolerability

| Discontinued for AE | 57% | 62% |
VEGFR TKI: Summary

<table>
<thead>
<tr>
<th>Activity</th>
<th>Pazopanib</th>
<th>Vandetanib</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>PNET</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>CNS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pheo, ELST</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Tolerability

| Discontinued for AE | Pazopanib (57%) | Vandetanib (62%) |
Systemic Therapy for VHL

- Evaluated in small phase 2 studies in localized RCC
 - 17 AAG, Vandetanib, Sunitinib, Pazopanib

- Modest activity

- Side effects of VEGFR-targeted therapy unacceptable to this population

- Not considered standard in pts with organ confined disease; management remains largely surgical
Targeting the VHL Pathway

VHL Protein

\[\beta \text{ domain} \]

HIF

HIF 2 Inhibitors

- VEGF
 - VEGFR
- PDGF
 - PDGFR
- HGF
 - MET

VHL Complex Disrupted
Development of Small Molecule HIF2α Inhibitor

UT Southwestern (UTSW) research on HIF-2α biology
- Identified small molecule binding pocket in PAS-B domain
- Established that small molecule binding led to inhibition of transcriptional activity

Scheuermann et al. PNAS 2009, 106:450
Key et al. JACS 2009, 131:17647

Slide courtesy of Naseem Zojwalla, Peloton
Development of Small Molecule HIF2α Inhibitor

HIF-2α antagonist bound to HIF-2α PAS-B* domain

HIF-2α PAS-B* (R247E mutant) domain (green)
HIF-1β PAS-B* (E362R mutant) domain (blue)
PT2385 (magenta)

Chen et al. Nature 2016, 539:112
Courtney et al. J Clin Oncol 2018

Slide courtesy of Naseem Zojwalla, Peloton
Development of Small Molecule HIF2α Inhibitor

HIF-2α antagonist bound to HIF-2α PAS-B* domain

PT2385

Chen et al. Nature 2016, 539:112
Courtney et al. J Clin Oncol 2018
PT2385-202 Trial

Phase 2 study of PT2385 in patients with VHL disease-associated RCC

• National Cancer Institute
• Key entry criteria
 – Germline VHL alteration
 – Measurable tumor in kidney
 – Treatment-naïve
 – No metastatic disease
• 4 patients enrolled:
 – Two patients with highest PT2385 drug exposure had tumor shrinkage in renal lesions with one of the patients also having retinal disease that improved on treatment
PT2385-202 Trial

Retinal Lesion Improvement in Patient 001

![Retinal Images]

Baseline (4/27/17)

3 Months (8/2/17)

Baseline (4/27/17)

8 Weeks after PT2385 stop (1/17/18)
HIF2α Inhibitor- PT2385: 1st Generation HIF-2α Inhibitor

• N = 26 in dose escalation at doses of 100-1800 mg PO BID
• N = 25 in expansion at 800 mg PO BID

• Median prior therapies: 4

• Anemia most common adverse event

• ORR: CR 2%; PR 12%; SD 52%

• Higher exposure is associated with antitumor activity
• High variability in drug exposure among patients
Sustained HIF-2α target engagement is necessary to achieve clinically meaningful benefit.

Progression Free Survival for patients experiencing steady-state exposure ≥ 0.5 µg/mL vs. < 0.5 µg/mL trough concentrations (all evaluable patients, n=48)

How to shift patients into the improved PFS group?

Improved exposure

Slide courtesy of Naseem Zojwalla, Peloton
PT2977: A Superior HIF-2α Inhibitor

- PT2977 surmounts the PK limitations of PT2385 and has a comparable safety/tolerability profile
- PT2977 is ~10 times more potent than PT2385
- The recommended Phase 2 dose of PT2977 is 120 mg p.o, q.d.

786-O subcutaneous xenograft model of RCC
A First-in-Human Phase 1/2 Trial of the Oral HIF-2α Inhibitor PT2977 in Patients with Advanced RCC

Toni K. Choueiri¹, Elizabeth R. Plimack², Todd M. Bauer³, Jaime R. Merchan⁴, Kyriakos P. Papadopoulos⁵, David F. McDermott⁶, M. Dror Michaelson⁷, Leonard J. Appleman⁸, Naseem J. Zojwalla⁹, and Eric Jonasch¹⁰

¹Dana-Farber Cancer Institute, Boston, MA; ²Fox Chase Cancer Center, Philadelphia, PA; ³Sarah Cannon Research Institute/Tennessee Oncology, PLLC., Nashville, TN; ⁴University of Miami, Miami, FL; ⁵South Texas Accelerated Research Therapeutics (START), San Antonio, TX; ⁶Beth Israel Deaconess Medical Center, Boston, MA; ⁷Massachusetts General Hospital, Boston, MA; ⁸University of Pittsburgh Medical Center, Pittsburgh, PA; ⁹Peloton Therapeutics Inc., Dallas, TX; ¹⁰MD Anderson Cancer Center, Houston, TX, USA.
HIF2α Inhibitor- PT2977- Best Change in Tumor Size

64% of patients experienced any tumor shrinkage

Best Change in Sum of Target Lesions from Baseline (%)

As of January 01, 2019

* = Continuing on PT2977

Slide courtesy of Naseem Zojwalla, Peloton
HIF2α- PT2977- Duration of Treatment

Best Response	N=55
PR | 12 (22%)
SD | 31 (56%)
DCR | 43 (78%)

Median Follow up 9 months, 20pts still ongoing as Jan, 2019

As of January 1, 2019

Slide courtesy of Naseem Zojwalla, Peloton
HIF2α- PT2977- Safety

- Anemia
 - Most common AE
 - Expected AE due to Regulation of EPO with HIF2α inhibitors
 - Managed well with EPO replacement as clinically indicated (EPO therapy initiated on average 6-8 weeks)

- Hypoxia
 - Average time of onset is after 3-4 weeks of therapy
 - Majority of cases triggered by an acute event

- No cardiovascular toxicities reported with treatment with HIF2α inhibitors (no Hypertension, no CHF...)

Safety profile compares well with current VEGFR TKI
PT2977-202 VHL Trial

Study Design/Schema

- **Target Enrollment:** 50 patients treated at 120mg/day
- **Primary Endpoint:** ORR in RCC lesions
 - Radiographic responses must be confirmed at least 4 weeks later
- **Secondary Endpoints:**
 - PFS, DOR, TTR, efficacy in non-RCC lesions, OS, Safety, PK
- **Key Entry Criteria:**
 - Germline VHL alteration
 - At least one measurable solid RCC lesion and no tumors requiring immediate surgical intervention
 - No prior systemic anti-cancer therapy
 - No metastatic disease

Tumor Evaluations

- PK/PD Pre, 2°, 5°
- PK/PD Pre, 2°, 5°
- First Tumor Evaluation is after 12 weeks of dosing, then Q 12 weeks thereafter

Screening

<table>
<thead>
<tr>
<th>Week</th>
<th>PT2977 continuous daily dosing until progression or toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Visits every 2-4 weeks for 25 weeks, then every 12 weeks

Discontinuation

- 28 Day follow up visit from last dose of study drug
- Long Term follow up – contact every 6 months for up to 3 years
Study Open at 11 Centers (8 US Centers and 3 European Centers)

- F. Donskov (Aarhus Univ., Denmark)
- T. Else (Univ of Michigan)
- O. Iliopoulos (MGH)
- E. Jonasch (MDACC)
- J. Maranchie (Univ of Pitt)
- B. Maughn (Huntsman)
- S. Oudard (Georges Pompidou, France)
- V. Narayan (Univ of Penn)
- K. Rathmell (Vanderbilt)
- R. Srinivasan (NCI)
- S. Welsh (Univ. of Cambridge, UK)

• ~ March –April, 2019: Accrual Complete

• May, 2019: Peloton Inc acquired by Merck
Therapeutic Strategies in Papillary RCC
Papillary RCC

- Most common nonclear cell variant (10-15% of all RCC)

- Some forms are very aggressive, metastatic disease is uniformly fatal

- No standard options of proven benefit
 - Modest outcomes with VEGF pathway antagonists, mTOR inhibitors and EGFR inhibitors
 - Response rates 0-36%, PFS ~6 months
SYSTEMIC THERAPY

Clinical trial (preferred)
or
Temsirolimus (category 1 for poor-prognosis patients;fcategory 2A for other risk groups)
or
Sorafenib
or
Sunitinib
or
Pazopanib
or
Axitinib
or
Everolimus
or
Bevacizumab
or
Erlotinib
and
Best supportive care;h

\textbf{See NCCN Guidelines for Palliative Care}

fPoor-prognosis patients, defined as those with ≥3 predictors of short survival. See \textit{Predictors of Short Survival Used to Select Patients for Temsirolimus (KID-B)}.

hBest supportive care can include palliative RT, metastasectomy, bisphosphonates, or RANK ligand inhibitors for bony metastases.

gChemotherapy (category 3) in clear cell and non-clear cell RCC with predominant sarcomatoid features has shown modest response to gemcitabine + doxorubicin or gemcitabine + capecitabine. Partial responses have been observed to cytotoxic chemotherapy (carboplatin + gemcitabine or carboplatin + paclitaxel) with collecting duct or medullary subtypes.
VEGFR or mTOR Inhibition in Papillary RCC

<table>
<thead>
<tr>
<th>Agent</th>
<th>N</th>
<th>Median PFS (months)</th>
<th>Median OS (months)</th>
<th>Overall response rate (ORR)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunitinib</td>
<td>61</td>
<td>6</td>
<td><18</td>
<td>12%</td>
<td>Ravaud, Ann Onc</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>27</td>
<td>1.6</td>
<td>12.6</td>
<td>0%</td>
<td>Tannir, Eur Urol</td>
</tr>
<tr>
<td>Everolimus (RAPTOR)</td>
<td>92</td>
<td>3.7</td>
<td>21.1</td>
<td>-</td>
<td>Escudier, ECCO</td>
</tr>
<tr>
<td>Everolimus</td>
<td>49</td>
<td>5.2</td>
<td>-</td>
<td>10%</td>
<td>Koh, Ann Onc</td>
</tr>
<tr>
<td>Everolimus vs Sunitinib (ESPN)</td>
<td>68</td>
<td>4.1</td>
<td>NR</td>
<td>0%</td>
<td>Tannir, ASCO 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vs 6.1</td>
<td>vs 10.5</td>
<td>vs vs 12%</td>
<td></td>
</tr>
<tr>
<td>Everolimus vs Sunitinib (ASPEN)</td>
<td>108</td>
<td>5.6</td>
<td>13</td>
<td>9%</td>
<td>Armstrong, ASCO 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vs 8.3</td>
<td>vs 32</td>
<td>vs vs 18%</td>
<td></td>
</tr>
</tbody>
</table>
Papillary RCC: Histologic Subtypes

Type 1

Type 2 (Non Type 1)
TCGA Profiling of Papillary RCC: 4 Distinct Subgroups
Targeting the Met Pathway in Papillary RCC
Hereditary Papillary Renal Cancer (HPRC)

- Familial form of type I papillary RCC
- Affected individuals present with bilateral multifocal papillary RCC
MET - The Gene for Hereditary Papillary Renal Cancer

Germline mutations in *MET* are the hallmark of HPRC

Location of *MET* on chromosome 7

Nonrandom duplication of chromosome bearing mutated *MET* allele

Schmidt et al., Nat Genetics, 1997
Understanding the Role of Met in Sporadic Papillary Renal Cancer

- **Activating Mutations in MET**
 - Germline mutations in tyrosine kinase domain (HPRC)
 - Somatic activating mutations seen in ~15% of sporadic papillary RCC
 - \(\text{MET} \) fusion or splice variants ~ 5%

- **Duplication of chromosome 7**
 - ~ 50% - 70% of all papillary RCC
 - Both \(\text{MET} \) and its activating ligand \(\text{HGF} \) located on Ch 7

- **\(\text{MET} \) and Ch7 alterations seen predominantly in type 1 papillary RCC**

Nat Genet 1997; Am J Path 1999; TCGA, NEJM 2015;
Phase II and Biomarker Study of the Dual MET/VEGFR2 Inhibitor Foretinib in Patients With Papillary Renal Cell Carcinoma

Foretinib (XL880)
Kinase Selectivity Profile

<table>
<thead>
<tr>
<th>Kinase</th>
<th>IC\textsubscript{50} nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALK</td>
<td>984</td>
</tr>
<tr>
<td>LTK</td>
<td>1290</td>
</tr>
<tr>
<td>ROS</td>
<td>13</td>
</tr>
<tr>
<td>IGF1R</td>
<td>1710</td>
</tr>
<tr>
<td>IR</td>
<td>102</td>
</tr>
<tr>
<td>INSRR</td>
<td>26</td>
</tr>
<tr>
<td>Met</td>
<td>7</td>
</tr>
<tr>
<td>RON</td>
<td>2</td>
</tr>
<tr>
<td>RYK</td>
<td>-</td>
</tr>
<tr>
<td>AXL</td>
<td>2</td>
</tr>
<tr>
<td>Mer</td>
<td>0.6</td>
</tr>
<tr>
<td>Tyro3</td>
<td>0.5</td>
</tr>
<tr>
<td>FGFR1</td>
<td>1006</td>
</tr>
<tr>
<td>FGFR2</td>
<td>832</td>
</tr>
<tr>
<td>FGFR3</td>
<td>1009</td>
</tr>
<tr>
<td>FGFR4</td>
<td>2990</td>
</tr>
<tr>
<td>RET</td>
<td>0.9</td>
</tr>
<tr>
<td>VEGFR1</td>
<td>5</td>
</tr>
<tr>
<td>VEGFR2</td>
<td>2</td>
</tr>
<tr>
<td>VEGFR3</td>
<td>0.7</td>
</tr>
<tr>
<td>CSF1R</td>
<td>1.7</td>
</tr>
<tr>
<td>Kit</td>
<td>48</td>
</tr>
<tr>
<td>FLT3</td>
<td>1.7</td>
</tr>
<tr>
<td>PDGFRA</td>
<td>2.6</td>
</tr>
<tr>
<td>PDGFRB</td>
<td>28</td>
</tr>
<tr>
<td>PTK7</td>
<td>-</td>
</tr>
<tr>
<td>ROR1</td>
<td>-</td>
</tr>
<tr>
<td>ROR2</td>
<td>-</td>
</tr>
<tr>
<td>DDR1</td>
<td>5.5</td>
</tr>
<tr>
<td>DDR2</td>
<td>0.1</td>
</tr>
<tr>
<td>NTRK2</td>
<td>2.6</td>
</tr>
<tr>
<td>NTRK3</td>
<td>1.1</td>
</tr>
<tr>
<td>NTRK1</td>
<td>2.3</td>
</tr>
<tr>
<td>MUSK</td>
<td>NC</td>
</tr>
</tbody>
</table>
Patient Eligibility

- Histologically confirmed locally advanced, bilateral multifocal, or metastatic sporadic papillary RCC

- Central pathology review performed by a single pathologist (Maria Merino, NCI)

- 1 prior systemic therapy allowed
Study Objectives

• **Primary objective:**
 – Overall Response Rate (ORR) by RECIST.

• **Secondary Objectives:**
 - Correlation of MET status (Mutation, Amplification or Trisomy 7) with outcome
 - Progression-Free Survival (PFS)
 - Overall Survival (OS)
 - Safety and tolerability
 - PK parameters and PD markers (plasma HGF, sMET, sVEGFR2 and VEGF) and correlation with outcome (with Don Bottaro)
Primary Endpoint: Overall Response Rate

<table>
<thead>
<tr>
<th></th>
<th>Dosing Cohort A (n=37)</th>
<th>Dosing Cohort B (n=37)</th>
<th>TOTAL (N=74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response Rate</td>
<td>5 (13.5%)</td>
<td>5 (13.5%)</td>
<td>10 (13.5%)</td>
</tr>
</tbody>
</table>

- Duration of response: 18.5 months
- Median PFS: 9.3 months
Germline *MET* Mutations Associated with High Response Rate

\[N = 67 \text{ evaluable:} \]

- Germline *MET* mutation (N=10)
 - Mutated *MET*:
 - 5/10 PR (50%)
 - 5 SD (4 with >10% reduction in SLD of tumors)
 - WT MET:
 - 5/57 (9%)

- Other *MET* alterations
 - *MET* amplification (N=2): No responses
 - Gain chromosome 7 (N=18): ORR 5%
Hereditary Papillary Renal Carcinoma (HPRC) Type 1
Regression of a renal tumor in a patient with HPRC treated with Foretinib

Pre-Treatment

Srinivasan, et al ASCO 2009
Regression of a Renal Tumor in a Patient with HPRC Treated with Foretinib

Pre-Treatment

Following 49 cycles of therapy

Srinivasan, et al ASCO 2009
Targeted Lesions in Patients with Germline MET Mutations
Treatment-Related Toxicities (≥10%)

<table>
<thead>
<tr>
<th></th>
<th>Intermittent Arm</th>
<th>Daily Dosing Arm</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All-Grade</td>
<td>Grade 3/4</td>
<td>All-Grade</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 (73%)</td>
<td>13 (35%)</td>
<td>33 (89%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 (76%)</td>
<td>2 (5%)</td>
<td>26 (70%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 (46%)</td>
<td>5 (13.5%)</td>
<td>24 (65%)</td>
</tr>
<tr>
<td>Nausea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 (65%)</td>
<td>0</td>
<td>14 (38%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 (46%)</td>
<td>1 (3%)</td>
<td>8 (21%)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 (38%)</td>
<td>0</td>
<td>10 (27%)</td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 (24%)</td>
<td>1 (3%)</td>
<td>6 (16%)</td>
</tr>
<tr>
<td>Dysphonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 (19%)</td>
<td>0</td>
<td>6 (16%)</td>
</tr>
<tr>
<td>Rash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 (21%)</td>
<td>0</td>
<td>5 (13.5%)</td>
</tr>
<tr>
<td>Night blindness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 (11%)</td>
<td>1 (3%)</td>
<td>4 (11%)</td>
</tr>
<tr>
<td>Pulmonary Embolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 (11%)</td>
<td>4 (11%)</td>
<td>4 (11%)</td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 (24%)</td>
<td>1 (3%)</td>
<td>6 (16%)</td>
</tr>
<tr>
<td>Edema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 (8%)</td>
<td>0</td>
<td>5 (13.5%)</td>
</tr>
</tbody>
</table>
Met Inhibitors in Papillary RCC: Summary

• MET activation status

 – Tumors with germline \textit{MET} mutations sensitive, \textit{BUT}

 – Signs of efficacy in the absence of \textit{MET} mutations (\textit{? VEGFR inhibition})
Met Inhibition in Papillary RCC: Future Plans

- Was optimal Met inhibition achieved?
 - Foretinib dosing limited by toxicity related to VEGFR inhibition
 - Extent of tumor Met inhibition- data not available
 - Are tumors with other forms of MET alterations (duplication of chromosome 7) sensitive, but require higher levels of inhibition?
Selective Met Inhibitor in Papillary RCC

14-C-0037: A Phase 2 Study of the MET Kinase Inhibitor INC280 in Papillary Renal Cell Cancer (NCT02019693)

• Primary endpoint:
 - Overall Response Rate

• Secondary endpoints:
 - Impact of MET status on outcome
 - PFS, OS
 - Modulation of Met activity (phospho-Met) in tumor tissue (with Don Bottaro)
Looking Beyond MET in Type 1 Papillary RCC

• High Incidence of Primary Resistance
 – Low response rates (7-15%) in multiple studies (foretinib, INC280, savolitinib)
 – Role of Met as a driver unclear in the absence of activating mutations
 – Additional genetic alterations

• Secondary Resistance
 – Acquisition of a second MET mutation
 – ?other alterations
MET Status in Patient-Derived Type1 Papillary RCC Cell Lines

<table>
<thead>
<tr>
<th>Cell line designation</th>
<th>Patient Gender</th>
<th>Age at Surgery</th>
<th>Procurement Source</th>
<th>Primary Tumor Histopathology</th>
<th>Met Mutation</th>
<th>Met Copy number</th>
<th>Other mutations Oncovar V4 analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>UOK345</td>
<td>male</td>
<td>56</td>
<td>pleural fluid</td>
<td>Type1PRCC</td>
<td>H1112R (germline)</td>
<td>3</td>
<td>CUL3(p.Y753)</td>
</tr>
<tr>
<td>UOK337</td>
<td>male</td>
<td>61</td>
<td>abdominal fluid</td>
<td>Type1PRCC</td>
<td>H1106Q (somatic)</td>
<td>~4</td>
<td>-</td>
</tr>
<tr>
<td>UOK342</td>
<td>male</td>
<td>63</td>
<td>ascites</td>
<td>Type1PRCC</td>
<td>-</td>
<td>7-8</td>
<td>NF2(splice site) KRAS (p.G12C)</td>
</tr>
<tr>
<td>UOK332</td>
<td>male</td>
<td>45</td>
<td>peritoneal fluid</td>
<td>Type1PRCC</td>
<td>-</td>
<td>~4</td>
<td>BAP1 (pH94R)</td>
</tr>
</tbody>
</table>
Targeting Metabolic Alterations: Phase 2 Study of Bevacizumab and Erlotinib
Hereditary Leiomyomatosis Renal Cell Carcinoma: HLRCC

- Cutaneous leiomyomas
- Uterine leiomyomas (fibroids)
- Renal cell carcinoma (Type 2 papillary RCC)
HLRCC Associated Kidney Cancer: Principles of Management

- Clinically aggressive phenotype

- Localized disease
 - Rapid growth kinetics
 - Propensity to metastasize early
 - Surgical resection recommended even with small primary

- Metastatic disease
 - Rapidly progressive and uniformly fatal
 - Not sensitive to chemotherapy, IL-2
 - Modest responses to VEGF-targeted therapy
Fumarate Hydratase:
HLRCC Kidney Cancer

![Diagram of Fumarate Hydratase and Krebs Cycle](image-url)

- Glucose
- Glycolysis
- Pyruvate
- Acetyl-CoA
- Oxaloacetate
- Citrate
- Malate
- Fumarate Hydratase (FH)
- Fumarate
- α-ketoglutarate
- Succinate
- Succinyl-CoA

Isaacs, Cancer Cell, 2005
Tong, Cancer Cell, 2011
Fumarate Hydratase: HLRCC Kidney Cancer

Glucose → Pyruvate → Acetyl-CoA → Oxaloacetate → Citrate
Malate → Isocitrate → α-ketoglutarate → Succinyl-CoA → Succinate
Fumarate

Krebs Cycle

Cancer Cell, 2005
Cancer Cell, 2011
UOK262: Glucose Dependence in an HLRCC-Derived Cell Line
A Sweet New Role for EGFR in Cancer

Jeffrey A. Engelman¹ and Lewis C. Cantley²,*

¹Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA
²Beth Israel Deaconess Medical Center Cancer Center, Boston, MA 02115, USA
*Correspondence: lewis_cantley@hms.harvard.edu
DOI 10.1016/j.ccr.2006.04.008
Study Design

Metastatic papillary RCC

N=41

Cohort 1 (HLRCC)
N = 20

Bevacizumab 10mg/kg IV q2 weeks
plus
Erlotinib 150 mg PO daily

Cohort 2 (Sporadic)
N = 21
Study Eligibility

- Histologic confirmation of papillary RCC and at least 1 site of measurable disease
- Adequate organ function
- Up to 2 prior VEGF-pathway inhibitors; no prior bevacizumab
- ECOG performance status 0-2
Patient Demographics

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 [HLRCC]</th>
<th>Cohort 2 [Sporadic]</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>20</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>Median Age (range), years</td>
<td>46 (22 – 63)</td>
<td>55 (35 – 73)</td>
<td>52 (22 – 73)</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11 (55%)</td>
<td>15 (71%)</td>
<td>26 (63%)</td>
</tr>
<tr>
<td>Female</td>
<td>9 (45%)</td>
<td>6 (29%)</td>
<td>15 (37%)</td>
</tr>
<tr>
<td>MSKCC Risk Groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>5</td>
<td>1</td>
<td>6 (15%)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>12</td>
<td>17</td>
<td>29 (70%)</td>
</tr>
<tr>
<td>Poor</td>
<td>3</td>
<td>3</td>
<td>6 (15%)</td>
</tr>
<tr>
<td>Prior Systemic Therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>14</td>
<td>9</td>
<td>23 (56%)</td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>12</td>
<td>18 (44%)</td>
</tr>
</tbody>
</table>
Patient Demographics

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 [HLRCC]</th>
<th>Cohort 2 [Sporadic]</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>20</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>Median Age (range), years</td>
<td>46 (22 – 63)</td>
<td>55 (35 – 73)</td>
<td>52 (22 – 73)</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11 (55%)</td>
<td>15 (71%)</td>
<td>26 (63%)</td>
</tr>
<tr>
<td>Female</td>
<td>9 (45%)</td>
<td>6 (29%)</td>
<td>15 (37%)</td>
</tr>
<tr>
<td>MSKCC Risk Groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>5</td>
<td>1</td>
<td>6 (15%)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>12</td>
<td>17</td>
<td>29 (70%)</td>
</tr>
<tr>
<td>Poor</td>
<td>3</td>
<td>3</td>
<td>6 (15%)</td>
</tr>
<tr>
<td>Prior Systemic Therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>14</td>
<td>9</td>
<td>23 (56%)</td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>12</td>
<td>18 (44%)</td>
</tr>
</tbody>
</table>
Bevacizumab plus Erlotinib in Papillary RCC - Efficacy

<table>
<thead>
<tr>
<th>Best Response by RECIST</th>
<th>Cohort 1 [HLRCC] (%)</th>
<th>Cohort 2 [Sporadic] (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=20</td>
<td>N=21</td>
<td></td>
</tr>
<tr>
<td>Confirmed Partial Response (PR)</td>
<td>13 (65%)</td>
<td>6 (29%)</td>
<td>19 (46%)</td>
</tr>
<tr>
<td>Overall Response Rate</td>
<td>65%</td>
<td>29%</td>
<td>46%</td>
</tr>
<tr>
<td>Stable disease (SD)</td>
<td>7 (35%)</td>
<td>13 (62%)</td>
<td>20 (49%)</td>
</tr>
<tr>
<td>Disease Control Rate (SD+PR)</td>
<td>100%</td>
<td>91%</td>
<td>95%</td>
</tr>
</tbody>
</table>
Bevacizumab plus Erlotinib in Papillary RCC - Efficacy

<table>
<thead>
<tr>
<th>Best Response by RECIST</th>
<th>Cohort 1 [HLRCC] (%)</th>
<th>Cohort 2 [Sporadic] (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=20</td>
<td>N=21</td>
<td></td>
</tr>
<tr>
<td>Confirmed Partial Response (PR)</td>
<td>13 (65%)</td>
<td>6 (29%)</td>
<td>19 (46%)</td>
</tr>
<tr>
<td>Overall Response Rate</td>
<td>65%</td>
<td>29%</td>
<td>46%</td>
</tr>
<tr>
<td>Stable disease (SD)</td>
<td>7 (35%)</td>
<td>13 (62%)</td>
<td>20 (49%)</td>
</tr>
<tr>
<td>Disease Control Rate (SD+PR)</td>
<td>100%</td>
<td>91%</td>
<td>95%</td>
</tr>
</tbody>
</table>
K-M Estimate of PFS

Median PFS 12.8 [95% CI 7.47 – 26.3]
K-M Estimate of PFS

Entire study: 12.8 [95% CI 7.47 – 26.3]
HLRCC: 24.2 months [95% CI 12.8 – NR]
Non-HLRCC: 7.4 months [95% CI 3.73 – 10.2]
Bevacizumab plus Erlotinib: Extent of Response
Bevacizumab plus Erlotinib: Response Duration

- Currently on therapy
- HLRCC
- Non-HLRCC

No. of cycles on therapy

Pts with Partial Response

0 10 20 30 40 50

Bevacizumab plus Erlotinib: Response Duration

- Currently on therapy
- HLRCC
- Non-HLRCC

No. of cycles on therapy

Pts with Partial Response

0 10 20 30 40 50
58 Year Old Man with HLRCC Associated Papillary RCC

Baseline PET/CT
58 Year Old Man with HLRCC Associated Papillary RCC

Baseline PET/CT

Following 4 Months of Therapy
58 Year Old Man with HLRCC Associated Papillary RCC
58 Year Old Man with HLRCC Associated Papillary RCC

Before Treatment

Following 4 Months of Therapy
36 Year Old Woman with HLRCC Associated Papillary RCC
Bevacizumab *plus* Erlotinib

HLRCC Associated Kidney Cancer

- Promising activity in HLRCC

- Study expanded to include an additional cohort of HLRCC patients
Bevacizumab plus Erlotinib

Sporadic Papillary RCC

• PFS comparable to other strategies in papillary RCC

• Responses following failure of other targeted/ VEGFR pathway agents

• Striking and durable responses in some patients with sporadic papillary RCC
Bevacizumab \textit{plus} Erlotinib: Future Directions

• How can we select sporadic papillary RCC patients likely to respond?

 – Histologic subtype
 • Type 1: 1/8 PR (13%)
 • Type 2: 5/13 PR (39%)

 – Evaluating potential molecular markers
 • Somatic mutations in \textit{FH}
 • EGFR
 • Other/related pathways, e.g, NRF2/Cul3/Keap1
Bevacizumab *plus* Erlotinib: Future Directions

Metastatic papillary RCC

N = 41

Bevacizumab 10mg/kg IV q2 weeks *plus* Erlotinib150 mg PO daily

- Cohort 3 (HLRCC) N = 20
- Cohort 4 (Sporadic) N = 20
- Cohort 3 (HLRCC) N = 20
- Cohort 4 (Sporadic) N = 20
Acknowledgements

Clinical Staff
Marston Linehan, M.D.
Adam Metwalli, M.D.
Gennady Bratslavsky, M.D.

Clinical Team
Julia Friend, PA-C
Martha Ninos, RN
Cheryl Royce, NP
Erin Purcell, RN
Geri Hawks, RN
Andy Gillespie, RN
Caitlin Drew, RN
Debbie Nielsen, RN

Berton Zbar, Ph.D
Len Neckers, Ph.D.
Don Bottaro, Ph.D.

UOB laboratories
Roma Pahwa, Ph.D.
Cathy Vocke, Ph.D.
Christopher Ricketts, Ph.D.
Carole Sourbier, Ph.D.
Youfeng Yang, M.S.
Robert Worrell, Ph.D

Laboratory of Pathology
Maria Merino, M.D.
Vanessa Moreno, M.D.
Sara Gil Hernandez, M.D.

Ophthalmology
Emily Chew, M.D
Henry Wiley, M.D.

Neurosurgery
Kareem Zaghloul, M.D.
Prashant Chittiboina, M.D.

Dermatology
Ed Cowan, M.D.
Heidi Kong, M.D.

Radiology/Nuc Med
Peter Choyke, M.D.
Ashkan Malayeri, M.D.
Clara Chen, M.D.
Mark Ahlman, M.D.
Brad Wood, M.D.
Venkatesh Krishnaswamy, M.D.

UOB Staff
Rabindra Gautam
Donna Drake
Kristin Choo
James Peterson
Gabby Coello
Cristiane Leite
Janet Gichonge

UOB Fellows
Eric Singer, M.D
Brian Shuch, M.D.
Abhinav Sidana, M.D.
Mark Ball, M.D.
Vladimir Valera, M.D.
Tom Sanford, M.D.
Siobhan Telfer, M.D.
Jonathan Bloom, M.D.

OP3 Staff
All Patients and their families