The Cairns SAXS-SANS-NMR Workshop -- Combining Small-Angle X-ray and Neutron Scattering with Biomolecular NMR - August 21, 2010

Xiaobing Zuo¹, Alex Grishaev², Andrew Whitten³, Charles Schwieters⁴ and Yun-Xing Wang¹

Open Remarks (Wang)

Part One: Fundamentals and Experimental Aspects of Small Angle X-ray Scattering (Zuo and Grishaeve)

- 1. Fundamentals of solution x-ray scattering (Zuo)
 - A. General aspects of x-ray scattering
 - History
 - Why x-ray scattering
 - Study scope
 - X-ray interference pattern
 - Solution x-ray scattering experiments
 - B. Physics of X-ray Scattering
 - Scattering and interference phenomena
 - Momentum transfer and phase change
 - X-ray form factor and structure factor
 - C. Solution x-ray scattering calculations from atomic coordinates
 - Solvent contribution and x-ray contrast
 - Debye equation
 - Fast calculation methods
- 2. Experimental Aspects of Solution Scattering (Grishaev)
 - Instruments (X-ray generators and detectors; exp. setups)
 - Data Acquisition (Synchrotron and bench-top based SAXS exp)
 - Scattering sample preparation
- 3. Data Processing (Grishaev)
 - 2D-> 1D data conversion
 - Background subtraction
 - Data quality evaluation

Part Two: Data Interpretation and Applications in Structural Biology (Zuo and Grishaev)

- 1. X-ray scattering profile and embedded structural information (Zuo)
 - d-spacing / resolution
 - Hierarchical structural information

¹National Cancer Institute, NIH, USA

²National Institute of the Diabetes and Digestive and Kidney Diseases, NIH, USA

³University of Queensland, Australia

⁴Division of Computational Bioscience, Center for Information Technology, NIH, USA

- SAXS vs. WAXS
- Guinier plot & radius of gyration
- Molecular weight determination
- Porod's law, Porod invariant and Porod volume
- Kratky plot
- Pair distance distribution function (PDDF) and PDDF calculations
- 2. Structural analysis from SAXS data (Grishaev)
 - Structure-data relationship
 - Ab initio low-resolution model/shape reconstruction form SAXS data
 - Multi-subunit systems: rigid body refinement against SAXS data
 - Flexible and unfolded systems
 - Multi-component systems, micelle-embedded proteins

Part Three: Neutron scattering (Whitten)

- 1. Neutron instrumentation (highlight differences to neutron scattering)
- 2. Theory of neutron scattering Comparison of X-ray and neutron scattering (how is the information different and how is it similar)
- 3. Contrast and contrast variation (how contrast is achieved, how it can be exploited for biomolecular complexes)
- 4. SANS experiment design (concentration requirements, choice of contrast points, deuteration levels)
- 5. Data collection and processing (normalisation, incoherent scattering, smearing effects)
- 6. Analysis of SANS data (stuhrmann plots etc, modelling)
- 7. Discussion of published examples of contrast variation

Part Four: Refinement of Structures restrained by SAXS and NMR restraints (Schwieters)

- 1. Computing SAXS/SANS curves during a structure calculation
 - approximate calculation of I(q)
 - calculation of the bound-solvent contribution
 - determination of solvent parameters
- 2. Protocol strategies for SAXS/SANS structure determination
- 3. Overview of elements of an Xplor-NIH script
- 4. Examples
 - refinement of NMR structures use of SANS with the protein L11
 - "docking" (with covalent bond) structure of EI dimer from SAXS and RDCs
 - characterization of hetereogeneity of DNA using NMR and SAXS data.
- 5. Stand-alone tools for computation of SAXS/SANS curves given one or more structures.