The Center for Advanced Preclinical Research: Evaluation of Cancer Therapeutics in Translational Mouse Cancer Models

Zoe Weaver Ohler
Mouse 101
6/5/18
• Introduction to CAPR Mission and Workflow

• Brief model overview:
 – Lung cancer
 – Ovarian cancer
 – Glioblastoma
 – Melanoma
 – PDX
Develop strategies for effective preclinical evaluation in murine cancer models

AND facilitate routine application in clinical research for optimal outcomes in cancer patient management.

- combination of internal research and intra/extramural collaborations
- Genetically engineered mouse (GEM) models, GEM-derived allograft models (subcutaneous and orthotopic), investigator-requested models, and “custom” PDX
Improving outcomes for GEM/orthotopic model studies

• Well-characterized model
 – tumor histopathology
 – latency and time to endpoint - metastases?
 – positive control for efficacy or standard of care
 – expressing biomarkers related to oncogene(s) of interest?
 – for IMT: T cell markers
 – can a large enough cohort for statistical significance be produced?

• How will we monitor growth of internal (autochthonous/orthotopic) tumors?
 – palpation, live animal imaging: MRI, ultrasound, BLI

• Decide at the start of the study what the endpoints will be, and the necropsy plan
 – ex: fresh or viably frozen tissue for transplant and/or cell line
 – flash-frozen
 – fixed tissue for pathology
 – blood
Improving outcomes for GEM/orthotopic model studies (cont.)

- Establish (preclinical friendly) timeline for the study
 - Does recruitment need to be staggered to get well-randomized tumor sizes?
 - In vivo imaging intervals?

- What is the treatment regimen/route/dose?
 - Drug tolerance may be different in wildtype mice vs. nudes
 - Availability of drug in tumor tissue - short-term PK/PD needed?
Available preclinical cancer models

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Genetic Events</th>
<th>Induction</th>
<th>Allograft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung AdCa</td>
<td>EGFR^{L858R/T790M}</td>
<td>Doxycycline</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Kras^{G12D/Lkb1}; Kras^{G12D/p53}</td>
<td>AdCre/Lenti-Cre</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>EML4-ALK</td>
<td>Doxycycline</td>
<td>-</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>pRb/Kras^{G12D}/PTEN</td>
<td>GFAP-CreER/tam Lenti-Cre</td>
<td>✓</td>
</tr>
<tr>
<td>Serous Ovarian Carcinoma</td>
<td>pRb/p53^{c/c or m/-}</td>
<td>AdCre</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>pRb/p53^{c/c or m/-}/Brca1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pRb/p53^{c/c or m/-}/Brca2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td>HGF/MET</td>
<td>UV or DMBA</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>BRAF^{V600E}</td>
<td>UV, Tyr-Cre</td>
<td>✓</td>
</tr>
<tr>
<td>Pancreatic Ductal AdCa</td>
<td>Kras^{G12D}/p53</td>
<td>PDX1-Cre</td>
<td>✓</td>
</tr>
</tbody>
</table>

- In development: Brca1/pRB/p53 mutant mammary cancer models, both GEM and orthotopic
CAPR translational research tools/workflow

- Potency assays
- PD assays
- Molecular profiling

GEM and allograft

- Tolerability assays
- PK/PD assays
- Efficacy
- Prevention studies

In vivo monitoring

- Enrollment based on tumor volume
- Model-specific live imaging to track efficacy
- Defined endpoints
- Pathology/histology
- Qualitative and quantitative molecular profiling of blood/tissue

- MRI
- BLI
- H&E
- IHC
- Transcriptome
- Metabolome
CAPR models for lung adenocarcinoma

<table>
<thead>
<tr>
<th>Lung cancer subtype</th>
<th>Non-small cell</th>
<th>Small cell</th>
</tr>
</thead>
</table>
| **MOUSE model available at CAPR (genetic alterations)** | • Kras;Lkb1
• Kras;p53
• EGFR-L858R (TKI sensitive)
• EGFR-L858R-T790M (TKI insensitive)*
• EML4-ALK | • Rb;p53 |

PK/PD

- Tumor-bearing lung
- Vehicle vs. MK-2206

PET-CT

- Image of PET-CT scan

MRI

- Image of MRI scan

Histology

- Image of histology

Example: Worked with a pharmaceutical company using an EGFR mutant-driven lung cancer model to predict effect in target patient population
Evaluation of a 3rd generation covalent inhibitor of EGFR (with Clovis Oncology)

- Study design used for both erlotinib-sensitive and insensitive (human)EGFR-driven GEM models

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Treatment</th>
<th>Dose/Schedule</th>
<th>Harvest Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Vehicle</td>
<td>PO, QD</td>
<td>21 days post treatment</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>Afatinib (BIBW2992)</td>
<td>20mg/kg PO, QD</td>
<td>21 days post treatment</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>CO-1686</td>
<td>50mg/kg PO, BID</td>
<td>21 days post treatment</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>CO-1686</td>
<td>100mg/kg PO, QD</td>
<td>21 days post treatment</td>
</tr>
</tbody>
</table>

- Readouts in the EGFR-L858R-T790M model
 - Tumor volume (MRI)
 - Lung tissue – Histopathology (H&E), Proliferation (Ki67), IHC (pEGFR)
 - Continue dosing n=6 mice to generate resistant tumors
CO-1686 is efficacious as a single agent

CO-1686 is very potent in EGFR^{L858R/T790M} transgenic model (similar response in EGFR^{L858R})
Activity is associated with reduced proliferation and pEGFR
Afatinib dosed at MTD due to wild type EGFR blockade; efficacy limited

Efficacy:
- CO-1686: Baseline
- CO-1686: 3W

Change from Baseline (%)

Walter A.O. et al., Cancer Discovery 2013;3:1404-1415
CO-1686-treated lungs have almost no evidence of tumor burden

Vehicle
Score 4.5

Afatinib (20 mg/kg QD)
Score 3.5

CO-1686 (50 mg/kg BID)
Score 0.5

CO-1686 (100 mg/kg QD)
Score 1.0

Small atypical adenoma
(n=1)
CAPR OVARIAN CANCER MODELS
Serous epithelial ovarian cancer GEM recapitulates features of human disease

Transcriptome analysis

Mouse model for SEOC
- RB-TS inactivation
- p53 mutation/loss
- BRCA1 or BRCA2 loss

Histology
- Papillary structures

Gross pathology/MRI

Analysis of blood metabolites

<table>
<thead>
<tr>
<th>Human ovarian cancer TISSUE</th>
<th>Mouse ovarian cancer SERUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-hydroxybutyrate</td>
<td>↑</td>
</tr>
<tr>
<td>α-tocopherol</td>
<td>↑</td>
</tr>
<tr>
<td>β-hydroxybutyrate</td>
<td>↑</td>
</tr>
<tr>
<td>citrate</td>
<td>↑</td>
</tr>
<tr>
<td>short chain acyl carnitines</td>
<td>↑</td>
</tr>
<tr>
<td>taurine</td>
<td>↓</td>
</tr>
</tbody>
</table>

Szabova et al., Cancer Res, 2012
Orthotopic model maintains features of GEM with a preclinical–friendly timeline

- Multifocal peritoneal carcinomatosis with tumor spread to all abdominal organs + lung mets as in GEM
CAPR GLIOBLASTOMA MULTIFORME MODELS
Orthotopic GDA model recapitulates features of GEM and human GBM

- Pseudopalisading tumor cells
- Necrosis
- Invasive

- Potency assays
- Target pathway analyses

Kras;Rb;Pten GFAP-CreER tamoxifen induction

Intracranial implant into wildtype recipients
Neural stem cell and astrocytic markers are expressed in invasive regions of the orthotopic tumors

- Invasion into non-neoplastic parenchyma
- Heterogenous cell population as in human GBM
GBM model evaluated in preclinical study evaluating PI3K and MAPK inhibitor combination

- Short term tumor suppression led to a small survival benefit

El Meskini et al., Disease Models & Mech, 2015
Melanoma models represent pathways perturbed in human melanoma

HGF/SF-Tg;CDK4^{R24C}

- HGF expression in BRAF-resistant melanoma
- Epitheloid histology
- (in vivo pagetoid spread)

BRAF^{V600E};PTEN+/-;CDKN2A+/-

- BRAF mutated in >50% of human melanoma
- Sarcomatous histology

GDA: GEM-derived allograft model

- Collect melanoma tissue
- Label with Luciferase/GFP
- Transplant to syngeneic mice
- Establish metastatic model by resection (HGF/SF-Tg;CDK4^{R24C})

- Lung and liver metastasis
Evaluation of therapeutic responses in metastatic melanoma GDA

- Resection of primary tumor
- Adjuvant treatment
- Time to metastasis/regrowth
- Targeted chemotherapy
- Immunotherapy

Primary melanoma

First-line treatment

Transplantation to syngeneic recipient mice (GDA)

HGF;CdK4R24C GEM primary melanoma
Melanoma models with diverse drivers respond differently to anti-CTLA-4 antibody.

- BRAF-driven model is sensitive to vemurafenib, no additional effect from anti-CTLA-4.
- HGF/MET-driven model responds to anti-CTLA-4.
CAPR PDX studies
Evaluation of therapeutic responses in Patient-Derived Xenografts (PDX)

• Using fresh patient tumor tissue to implant either subcutaneously or orthotopically in immunocompromised mice

• NSG (NOD-SCID-gamma) mice developed at the Jackson Laboratory commonly used as recipients (B and T cell deficient; also deficient in functional NK cells)

• Advantages:
 – ability to treat actual patient tumor material and evaluate drug efficacy
 – Can do longitudinal studies if multiple biopsies are part of clinical trial

• Disadvantages:
 – Tumors may change in mutation spectrum, gene expression after serial passaging in mice
 – Take rate may not be ideal (depends on tissue origin)
 – Immunocompromised mice are not useful for evaluating most immunotherapies
PDX example longitudinal study:

Acquired resistance to targeted drugs in EGFR-driven lung cancer (collaboration with Dr. Udayan Guha, TGOB NCI)

- Clinical trial NCI-16-C-0092: A Pilot Study of Local Ablative Therapy for Treatment of Oligoprogressive, EGFR-Mutated, Non-Small Cell Lung Cancer (NSCLC)

- Take tumor samples (from biopsy, lung surgery, or surgery on metastasis) prior to treatment, at progression, and at progression post-treatment

- Characterize implanted tumors for lung adenocarcinoma markers; sequencing and gene expression to confirm mechanisms of resistance

- Therapeutic efficacy study with combination treatment to inhibit pathways contributing to resistance

Patient with EGFR-activating mutation

Biopsy/PDX

EGFR inhibitor

Patient with progression

Surgery/PDX

EGFR inhibitor re-challenge

Patient with progression/metastasis to other sites

Surgery/PDX
Efficacy study results for PDX (sample taken at surgery) with EGFR mutation/cMET amplification

Treatment with EGFR inhibitor + cMET inhibitor

Vehicle (untreated)

MET inhibitor

EGFR inhibitor

Combination treatment
• Development and retooling of relevant mouse models for preclinical research
• Genetically engineered mice or allografts for small molecule and immunotherapy evaluation
• Development of new PDX models
• Facilitation of preclinical translation to the clinic
• Collaboration mechanisms available for CCR through RFA
 - LOI due in October, Application due in November
• You’re invited! CAPR minisymposium: 9/6/2018, Lipsett and webcast

![CAPR logo]

Website: https://ccr.cancer.gov/capr
Email: zweaverohler@mail.nih.gov
Zoë Weaver Ohler, PhD (Team Leader)
Rajaa El Meskini, PhD
Ludmila Szabova, PhD
Anthony Iacovelli
Alan Kulaga
Michelle Gumprecht
Debbie Householder
Melanie Gordon
Lucy Lu
Devon Atkinson

Serguei Kozlov, PhD (Team Leader)
Wendy Bautista, MD
Keith Collins
Jerry Schlomer
Norene O’Sullivan
Deborah Gilbert
Theresa Guerin
Catherine Drennan
Stephanie Springer
Bonita Sears

Wendi Custer, Histotechnologist
Ken Miller, Project Manager
Chris Hester, Administration