

Clustering Methods: From k-means to Gaussian Mixture Model and Louvain Algorithm

Maxwell Lee

High-dimension Data Analysis Group Laboratory of Cancer Biology and Genetics Center for Cancer Research National Cancer Institute

October 19, 2020

Outline of Clustering Methods

Contributed by Emily Tai

Effect of Covariance Structure on GMM Clustering

Label by group

Choose the Number of Clusters with Jensen-Shannon Divergence

Mixture of Bivariate Gaussian Distributions

Single Gaussian

Mixture of two Gaussians

Non-Negative Matrix Factorization (NMF)

NMF is a dimension reduction method. Why are we talking about it here?

Primary reason:

NMF is closely related to k-means and GMM. We can gain better understanding of clustering analysis through the lens of dimension reduction.

Secondary reason:

NMF is also closely related to Latent Dirichlet Allocation (LDA). It helps to understand LDA.

Mathematic Model of Non-Negative Matrix Factorization

tall

X_{mn}: m features; n samples
W_{mk}: m features; k latent variables
H_{km}: k latent variables; n encodings

latent variables: basis images topics centroids signatures

Each element of matrix is non-negative $X \ge 0$; $W \ge 0$; $H \ge 0$

 $k \ll \min(m,n) \longrightarrow$ Dimension reduction

Lee and Seung, Nature 1999; 401:788–791

NMF is Related to PCA

 $\boldsymbol{X} \sim \boldsymbol{W}\boldsymbol{H}$

 $\begin{array}{ll} XE = Z \\ PCA & X = ZE^T \\ & X^T = EZ^T \\ & X^T \sim E_{mk}Z^T \end{array}$

But PCA can have negative values!

Understanding NMF from Topic Modeling (Mixture Model)

 X_{mn} : m words; n documents W_{mk} : m words; k topics H_{km} : k topics; n documents

Topic modeling: $\Sigma_i X_{ij} = 1$ (column sums to 1) $\Sigma_i W_{ij} = 1$ and $\Sigma_i H_{ij} = 1$

 $x_{ij} \sim \Sigma_k w_{ik} h_{kj}$

Understanding NMF from Topic Modeling (Mixture Model)

I will talk about spectral clustering, which is a graph-based method and consists of dimension reduction with Laplacian Eigenmap and k-means clustering in the reduced dimension space. I will also talk about Louvain algorithm, which is used in Seurat package to cluster single cell RNAseq data. Louvain algorithm is a network community approach. It is very fast and has capacity to do clustering analysis for million nodes in a network. I will provide practical examples to illustrate how each method works and how to interpret the results of clustering analysis and explain the pros and cons of each method.

Understanding NMF from Topic Modeling (Mixture Model)

$$x_j \sim W h_j$$

Clustering: label document with the topic having the highest frequency

nsNMF: nonsmooth NMF (sparse NMF)

PCA of TCGA BRCA Samples

X_{mn} m = 5000 genes n = 977 samples

subtype

- Basal
- Her2

- LumA LumB Normal

X	freq
Basal	173
Her2	73
LumA	500
LumB	193
Normal	38

PCA: Label by Subtype vs. by NMF Cluster Label by NMF clusters in high-dimension

PCA: Label by NMF Cluster vs. by k-means Cluster Label by NMF clusters in Label by k-means clusters high-dimension in high-dimension

accuracy 68.5%

accuracy 65%

Comparison Between Subtype and NMF vs. k-means Cluster (HD)

	Basal	Her2	LumA	LumB	Normal
clust1	155	2	11	1	30
clust2	18	62	7	32	2
clust3	0	4	338	38	6
clust4	0	2	132	114	0
clust5	0	3	12	8	0

NMF

Accuracy $=$ ((155 + 6)	52 + 338 +	114) / 977 =	= 68.5%
----------------	-----------	------------	--------------	---------

Match Mismatch

	Basal	Her2	LumA	LumB	Normal
clust1	169	0	0	0	6
clust2	4	69	17	40	5
clust3	0	0	268	11	21
clust4	0	0	125	119	0
clust5	0	4	90	23	6

K-means

Accuracy = (169 + 69 + 268 + 119 + 6) / 977 = 64.6%

PCA of TCGA BRCA Samples with Pam50 Genes

PCA with pam50: Label by Subtype vs. by NMF Clusters

Label by subtype

Label by NMF clusters in high-dimension

PCA with pam50: Label by NMF vs. k-means Clusters

Label by NMF clusters in high-dimension

Label by k-means clusters in high-dimension

accuracy 69%

Comparison Between Subtype and NMF vs. k-means Cluster (HD)

	Basal	Her2	LumA	LumB	Normal
clust1	172	6	5	0	15
clust2	0	58	3	15	0
clust3	0	9	356	61	23
clust4	0	0	136	91	0
clust5	1	0	0	26	0

Accuracy = (172 + 58 + 356 + 91) / 977 = 69%

N	MF

Match Mismatch

	Basal	Her2	LumA	LumB	Normal
clust1	170	0	0	0	8
clust2	2	72	11	31	4
clust3	0	0	221	75	0
clust4	1	1	81	87	0
clust5	0	0	187	0	26

Accuracy = (170 + 72 + 221 + 87 + 26) / 977 = 59%

K-means

Application of NMF to COSMIC Mutation Signature

	A	С	G	Т
А	0	1	1	1
С	1	0	1	1
G	1	1	0	1
Т	1	1	1	0

 $N_1[A>C]_2N_3$

4*6*4=96

COSMIC Mutation Signatures

NMF analysis of 7042 tumors

15 out of 22 signatures

Ludmil B. Alexandrov, ..., Michael R. Stratton Nature 500:415–421(2013)

COSMIC Mutation Signatures

Ludmil B. Alexandrov, ..., Michael R. Stratton Nature 500:415–421(2013)

COSMIC Mutation Signatures

Ludmil B. Alexandrov, ..., Michael R. Stratton Nature 500:415–421(2013)

Algorithm of NMF

 $X \approx WH$

$$\min_{W,H \ge 0} ||X - WH||_F^2 = \sum_{i,j} (X - WH)_{ij}^2$$

Alternating multiplicative update

 $H \leftarrow H \odot W^T X / W^T W H$

 $W - W \odot XH^T/WHH^T$

Hadamard product operator ⊙ element-wise multiplication of matrices

Matrix Representation of k-means Clustering

$$\min_{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_k} \sum_{i=1}^k \sum_{\mathbf{x} \in \mathcal{C}_i} ||\mathbf{x} - \mu_i||^2 \qquad \begin{array}{l} \mu_i \text{ is the centroid of} \\ \text{data points in } C_i \end{array}$$

		C1	C2	C3	C4
	<i>x</i> ₁	1	0	0	0
	<i>x</i> ₂	0	1	0	0
$B_{nk} =$	x_3	0	1	0	0
	x_4	0	0	1	0
	x_5	0	0	0	1
	x_6	0	0	1	0

Class membership matrix B: each row has only one 1; the others are 0 sum of column is the size of the cluster columns are orthogonal

Matrix Representation of k-means Clustering

		C1	C2	C3	C4
	<i>x</i> ₁	1	0	0	0
	<i>x</i> ₂	0	1	0	0
R –	x_3	0	1	0	0
\mathbf{D}_{nk} –	x_4	0	0	1	0
	<i>x</i> ₅	0	0	0	1
	x_6	0	0	1	0

 $\sum_{i} B_{ij} = |\mathcal{C}_j|$ sum of column is the size of the cluster

 $D = diag(1/|\mathcal{C}_1|, 1/|\mathcal{C}_2|, ..., 1/|\mathcal{C}_k|)$ $(BD^{\frac{1}{2}})^T BD^{\frac{1}{2}} = D^{\frac{1}{2}}B^T BD^{\frac{1}{2}} = I$

Matrix Representation of k-means Clustering

$$\min_{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_k} \sum_{i=1}^k \sum_{\mathbf{x} \in \mathcal{C}_i} ||\mathbf{x} - \mu_i||^2$$

$$\mu_i = \frac{1}{|\mathcal{C}_i|} \sum_{\mathbf{x} \in \mathcal{C}_i} \mathbf{x}$$

M = XBD M: k means (centroids) in columns X: n samples in columns B: k clusters in columns D: diagonal matrix; 1/cluster size

XBDB^T: each sample selects its corresponding centroid in columns

$$\min_{B} ||X - XBDB^T||_F^2$$

k-means Clustering is Equivalent to Sparse NMF

k-means
$$\min_{B} ||X - XBDB^T||_F^2$$

$$\mathsf{NMF} \qquad \min_{W,H \ge 0} ||X - WH||_F^2$$

$$\label{eq:W} \begin{split} W &\sim XBD \\ H &\sim B^T \end{split}$$

B is orthogonal and sparse Sparse NMF or non-smooth NMF

NMF is related to GMM and mixture model

Outline of Clustering Methods

Contributed by Emily Tai