

Clustering Methods: From k-means to Gaussian Mixture Model and Louvain Algorithm

Maxwell Lee

High-dimension Data Analysis Group Laboratory of Cancer Biology and Genetics Center for Cancer Research National Cancer Institute

October 5, 2020

Outline of Clustering Methods

GMM: Gaussian Mixture Model LDA: Latent Dirichlet Allocation

Contributed by Emily Tai

Increased Separation Between Clusters Is Related to Increased Distance Between the Groups

$$egin{pmatrix} X_1 \ X_2 \end{pmatrix} \sim \mathcal{N}\left(egin{pmatrix} \mu_1 \ \mu_2 \end{pmatrix}, egin{pmatrix} 1 &
ho \
ho & 1 \end{pmatrix}
ight)$$

 $\rho = 0$

K-means Clustering

Accuracy of k-means Clustering

Confusion matrix Column: actual category Row: assigned category

	g1	g2
c1	183	8
c2	17	192

accuracy of dataset d2 Match: diagonal elements (red) Mismatch: off diagonal elements (green)

accuracy=(183+192)/400 =93.75%

K-means Clustering Uses Euclidean Distance

An implicit assumption: shape of data is sphere (correlation=0)

Effect of Covariance Structure on Clustering

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

$$\underbrace{\text{Group1}}_{d1} \quad \underbrace{\text{Group2}}_{d1}$$

$$\underbrace{ \begin{array}{c} \mu_1 \\ \mu_2 \\ \mu_1 \\ \mu_2 \\ \mu_1 \\ \mu_2 \\ \mu_1 \\ \mu_2 \\ \mu_1 \\ \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_1 \\ \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_1 \\ \mu_2 \\ \mu_$$

0.8

0.9

0

0

0

0

0.8

0.9

-1

-1

d3

d4

Effect of Covariance Structure on Clustering

$$egin{pmatrix} X_1 \ X_2 \end{pmatrix} \sim \mathcal{N}\left(egin{pmatrix} \mu_1 \ \mu_2 \end{pmatrix}, egin{pmatrix} 1 &
ho \
ho & 1 \end{pmatrix}
ight)$$

Group1 Group2 ρ_1 μ_1 μ_2 μ_1 μ_2 ρ_2 d1 0 0 0 0 -1 1 0.7 d2 0 0 0.7 1 -1 0.8 0.8 d3 0 0 -1 d4 0 0 0.9 0.9 -1

Effect of Covariance Structure on k-means Clustering

Label by group

Label by k-means cluster

Accuracy of k-means Clustering Decreases as Covariance Increases

Effect of Covariance Structure on GMM Clustering

Label by group

Accuracy of GMM Clustering Increases as Covariance Increases

Choose the Number of Clusters with Jensen-Shannon Divergence

Jensen-Shannon Divergence

$$\mathrm{JSD}(P \parallel Q) = rac{1}{2}D(P \parallel M) + rac{1}{2}D(Q \parallel M)$$
 where $M = rac{1}{2}(P+Q)$

$$D_{ ext{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log igg(rac{P(x)}{Q(x)}igg)$$

Euclidean Distance vs. Mahalanobis Distance

Euclidean distance: $P_1 < P_3 < P_2$ Probability: $p_1 = p_2 > p_3$

Mahalanobis distance is a statistical distance related to probability

Prasanta Chandra Mahalanobis in 1936

Multivariate Gaussian Distribution

 $p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$

- $$\begin{split} &\Sigma: \text{ covariance matrix} \\ &\Sigma^{-1}: \text{ inverse of } \Sigma \\ &\Lambda: \text{ Diagonal matrix with Eigen values} \\ &W: \text{ Eigen vectors} \\ &Z: \text{ Principal Components} \\ &Z_s: \text{ Standardized } Z \\ &z: \text{ a sample from } Z_s \\ &T: \text{ Transposition} \\ &\mu: \text{ mean vector} \end{split}$$
 - Z = XW $Z_s = XW\Lambda^{-1/2}$ $z = \Lambda^{-1/2}W^Tx$ $z^Tz = x^TW\Lambda^{-1/2}\Lambda^{-1/2}W^Tx$ $z^Tz = x^T\Sigma^{-1}x$

Multivariate Gaussian Distribution

PCA of TCGA BRCA Samples

977 samples 5000 genes

X	freq
Basal	173
Her2	73
LumA	500
LumB	193
Normal	38

PCA: Label by Subtype vs. by GMM Cluster

Label by subtype

Label by GMM clusters in high-dimension

PCA: Label by GMM Cluster vs. by k-means ClusterLabel by GMM clusters in
high-dimension
accuracy 60%Label by k-means clusters
in high-dimension
accuracy 65%

Comparison Between Subtype and GMM vs. k-means Cluster (HD)

	Basal	Her2	LumA	LumB	Normal
clust1	168	1	1	0	6
clust2	2	59	47	57	8
clust3	0	0	241	6	15
clust4	0	3	112	106	1
clust5	3	10	99	24	8

Accuracy = (168 + 59 + 241 + 106 + 8) / 977 = 59.6%

Match Mismatch

	Basal	Her2	LumA	LumB	Normal
clust1	169	0	0	0	6
clust2	4	69	17	40	5
clust3	0	0	268	11	21
clust4	0	0	125	119	0
clust5	0	4	90	23	6

K-means

Accuracy = (169 + 69 + 268 + 119 + 6) / 977 = 64.6%

Potential Issues of GMM and k-means Clustering

- 1) Local maxima (MLE)
- 2) Incorrect data model
- 3) Curse of dimensionality
- 4) Data are not linearly separable

PCA of TCGA BRCA Samples with Pam50 Genes

PCA with pam50: Label by Subtype vs. by GMM Clusters

Label by subtype

Label by GMM clusters in high-dimension accuracy 65%

³⁻3-21.1% variance subtype label.HD Basal clust1 Her2 clust2 0-0. LumA clust3 LumB clust4 Normal clust5 PC2 -3--3 -6 6 -66 -3 -3 З PC1 42.4% variance PC1 42.4% variance

PCA with pam50: Label by GMM vs. k-means Clusters

Label by GMM clusters in high-dimension

3-

0

-3

-6

-3

PC1

21.1% variance

PC2

accuracy 59% accuracy 65% TCGA BRCA samples: label by k-means cluster; HD 3label.HD label.HD clust1 clust1 clust2 clust2 0 clust3 clust3

Label by k-means clusters

in high-dimension

Comparison Between Subtype and GMM vs. k-means Cluster (HD)

	Basal	Her2	LumA	LumB	Normal
clust1	165	0	0	0	6
clust2	8	70	19	22	6
clust3	0	0	254	40	2
clust4	0	3	175	131	5
clust5	0	0	52	0	19

GMM

Accuracy = $(165 + 70 + 254 + 131 + 19) / 977 = 65.4\%$	
---	--

Match Mismatch

	Basal	Her2	LumA	LumB	Normal
clust1	170	0	0	0	8
clust2	2	72	11	31	4
clust3	0	0	214	76	0
clust4	1	1	82	86	0
clust5	0	0	193	0	26

Accuracy = (170 + 72 + 221 + 87 + 26) / 977 = 59%

K-means

PCA with pam50: Label by Subtype vs. by GMM Clusters

Label by subtype

Label by GMM clusters with 2 PCs

PCA with pam50: Label by GMM vs. k-means ClustersLabel by GMM clustersLabel by k-means clusterswith 2 PCswith 2 PCs

accuracy 67%

accuracy 56%

Comparison Between Subtype and GMM vs. k-means Cluster (LD)

	Basal	Her2	LumA	LumB	Normal
clust1	167	3	0	0	9
clust2	6	55	0	19	2
clust3	0	0	336	34	11
clust4	0	6	64	81	0
clust5	0	9	100	59	16

Accuracy = (167 + 55 + 336 + 81 + 16) / 977 = 67%

GMM

Match Mismatch

	Basal	Her2	LumA	LumB	Normal
clust1	166	1	0	0	9
clust2	7	65	11	33	2
clust3	0	2	227	1	27
clust4	0	2	66	87	0
clust5	0	3	196	72	0

Accuracy = (166 + 65 + 227 + 87) / 977 = 55.7%

K-means

Jensen-Shannon Divergence vs. Number of Cluster (LD)

Mixture of Univariate Gaussian Distribution

Mixture of Bivariate Gaussian Distributions

Single Gaussian

Mixture of two Gaussians

Algorithm of GMM: Maximal Likelihood Estimate

$$\prod_{j=1}^{m} \sum_{k=1}^{K} \frac{1}{(2\pi)^{m/2} \|\Sigma_{k}\|^{1/2}} \exp\left[-\frac{1}{2} \left(\mathbf{x}_{j} - \mu_{k}\right)^{T} \Sigma_{k}^{-1} \left(\mathbf{x}_{j} - \mu_{k}\right)\right] P(y = k)$$

m observations k mixture model of Gaussian distributions μ_k is centroid coordinate of kth cluster Σ_k is covariance matrix of kth cluster P(y=k) is the probability of observation y as a member of cluster k

$$\left(\mathbf{x}_{j}-\boldsymbol{\mu}_{k}\right)^{T}\boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}_{j}-\boldsymbol{\mu}_{k}\right)$$
 is Mahalanobis distance

Algorithm of GMM: Expectation Maximization (EM)

Initialization: initialize k centroids with hierarchical clustering or k-means or random points

Alternating between the following two steps until converge

E step: compute expected probability of each datapoint as a member for each class (soft assignment)

$$\mathbf{P}\left(Y_{j}=k\left|x_{j},\lambda_{t}\right) \propto p_{k}^{(t)}\mathbf{p}\left(x_{j}\left|\mu_{k}^{(t)},\boldsymbol{\Sigma}_{k}^{(t)}\right)\right)$$

M step: update Gaussian distribution parameters for each class

$$\mu_k^{(t+1)} = \frac{\sum_j P(Y_j = k | x_j, \lambda_t) x_j}{\sum_j P(Y_j = k | x_j, \lambda_t)} \qquad \qquad \sum_k^{(t+1)} = \frac{\sum_j P(Y_j = k | x_j, \lambda_t) \left[x_j - \mu_k^{(t+1)} \right] \left[x_j - \mu_k^{(t+1)} \right]^T}{\sum_j P(Y_j = k | x_j, \lambda_t)}$$

 $\lambda_t = \{ \mu_1{}^{(t)}, \, \mu_2{}^{(t)} \dots \, \mu_K{}^{(t)}, \, \Sigma_1{}^{(t)}, \, \Sigma_2{}^{(t)} \dots \, \Sigma_K{}^{(t)}, \, p_1{}^{(t)}, \, p_2{}^{(t)} \dots \, p_K{}^{(t)} \}$

Comparison Between GMM and k-means Clustering

Initialization: initialize k centroids with hierarchical clustering or k-means

Alternating between the following two steps until converge

E step: compute expected probability of each datapoint as a member for each class hard assignment

$$\mathbf{P}\left(Y_{j}=k\left|x_{j},\lambda_{t}\right) \propto p_{k}^{(t)}\mathbf{p}\left(x_{j}\left|\mu_{k}^{(t)},\boldsymbol{\Sigma}_{k}^{(t)}\right)\right)$$

M step: update Gaussian distribution parameters for each class

 $\lambda_t = \{ \mu_1{}^{(t)}, \, \mu_2{}^{(t)} \dots \, \mu_K{}^{(t)}, \, \Sigma_1{}^{(t)}, \, \Sigma_2{}^{(t)} \dots \, \Sigma_K{}^{(t)}, \, p_1{}^{(t)}, \, p_2{}^{(t)} \dots \, p_K{}^{(t)} \}$

Outline of Clustering Methods

Contributed by Emily Tai