Clustering Methods:

From k-means to Gaussian Mixture Model and Louvain Algorithm

Maxwell Lee

High-dimension Data Analysis Group
Laboratory of Cancer Biology and Genetics
Center for Cancer Research
National Cancer Institute

October 5, 2020

Outline of Clustering Methods

Contributed by Emily Tai

Increased Separation Between Clusters Is Related to Increased Distance Between the Groups

$$
\begin{gathered}
\binom{X_{1}}{X_{2}} \sim \mathcal{N}\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right) \\
\rho=0
\end{gathered}
$$

	Group1		Group2	
	μ_{1}	μ_{2}	μ_{1}	μ_{2}
d1	0	0	0	0
d2	0	0	2	2
d3	0	0	3	3
d4	0	0	6	6

group

- g1
- g2

K-means Clustering

color by group

color by k-means cluster

Accuracy of k-means Clustering

Confusion matrix Column: actual category Row: assigned category

	g1	g2
c1	183	8
c2	17	192

accuracy of dataset d2
Match: diagonal elements (red) Mismatch: off diagonal elements (green)
accuracy $=(183+192) / 400$
$=93.75 \%$

K-means Clustering Uses Euclidean Distance

An implicit assumption: shape of data is sphere (correlation $=0$)

Effect of Covariance Structure on Clustering

> d1
> $\binom{X_{1}}{X_{2}} \sim \mathcal{N}\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)\right)$
> Group 1
> group
> - g1
> - g2

Effect of Covariance Structure on Clustering

$$
\binom{X_{1}}{X_{2}} \sim \mathcal{N}\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right)
$$

Group1 Group2

	μ_{1}	μ_{2}	ρ_{1}	μ_{1}	μ_{2}	ρ_{2}
d1	0	0	0	1	-1	0
d2	0	0	0.7	1	-1	0.7
d3	0	0	0.8	1	-1	0.8
d4	0	0	0.9	1	-1	0.9

Effect of Covariance Structure on k-means Clustering

Label by group

Label by k-means cluster

cluster

- c1
- c2

Accuracy of k-means Clustering Decreases as Covariance Increases

Effect of Covariance Structure on GMM Clustering

Label by group

Label by GMM cluster

Accuracy of GMM Clustering Increases as Covariance Increases

Choose the Number of Clusters with Jensen-Shannon Divergence

Jensen-Shannon Divergence

$$
\operatorname{JSD}(P \| Q)=\frac{1}{2} D(P \| M)+\frac{1}{2} D(Q \| M)
$$

$$
\text { where } M=\frac{1}{2}(P+Q)
$$

$$
D_{\mathrm{KL}}(P \| Q)=\sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)}\right)
$$

Euclidean Distance vs. Mahalanobis Distance

$$
\begin{array}{r}
\text { Euclidean distance: } \mathrm{P}_{1}<\mathrm{P}_{3}<\mathrm{P}_{2} \\
\text { Probability: } \mathrm{p}_{1}=\mathrm{p}_{2}>\mathrm{p}_{3}
\end{array}
$$

Mahalanobis distance is a statistical distance related to probability
Prasanta Chandra Mahalanobis in 1936

Multivariate Gaussian Distribution

Σ : covariance matrix Σ^{-1} : inverse of Σ
Λ : Diagonal matrix with Eigen values W: Eigen vectors
Z: Principal Components
Z_{s} : Standardized Z
z : a sample from Z_{s}
T: Transposition
μ : mean vector

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{XW} \\
\mathrm{Z}_{\mathrm{s}} & =\mathrm{XW} \Lambda^{-1 / 2} \\
\mathrm{z} & =\Lambda^{-1 / 2} \mathrm{~W}^{\mathrm{T}} \mathrm{X} \\
\mathrm{z}^{\mathrm{T}} \mathrm{Z} & =\mathrm{X}^{\mathrm{T}} \mathrm{~W} \Lambda^{-1 / 2} \Lambda^{-1 / 2} \mathrm{~W}^{\mathrm{T}} \mathrm{X} \\
\mathrm{z}^{\mathrm{T}} \mathrm{Z} & =\mathrm{X}^{\mathrm{T}} \Sigma^{-1} \mathrm{X}
\end{aligned}
$$

Multivariate Gaussian Distribution

PCA of TCGA BRCA Samples

977 samples
5000 genes
subtype

- Basal
- Her2
- LumA
- LumB
- Normal

x	freq
Basal	173
Her2	73
LumA	500
LumB	193
Normal	38

PCA: Label by Subtype vs. by GMM Cluster

Label by subtype
Label by GMM clusters in high-dimension accuracy 60%

PCA: Label by GMM Cluster vs. by k-means Cluster

Label by GMM clusters in high-dimension accuracy 60\%

Label by k-means clusters in high-dimension accuracy 65%

Comparison Between Subtype and GMM vs. k-means Cluster (HD)

	Basal	Her2	LumA	LumB	Normal
clust1	168	1	1	0	6
clust2	2	59	47	$\mathbf{5 7}$	8
clust3	0	0	$\mathbf{2 4 1}$	6	15
clust4	0	3	112	106	1
clust5	3	10	99	24	8

GMM

$$
\text { Accuracy }=(168+59+241+106+8) / 977=59.6 \%
$$

Match
Mismatch

	Basal	Her2	LumA	LumB	Normal
clust1	169	0	0	0	6
clust2	4	69	$\mathbf{1 7}$	$\mathbf{4 0}$	5
clust3	0	0	$\mathbf{2 6 8}$	11	21
clust4	0	0	125	119	0
clust5	0	4	90	23	6

K-means

Accuracy $=(169+69+268+119+6) / 977=64.6 \%$

Potential Issues of GMM and k-means Clustering

1) Local maxima (MLE)
2) Incorrect data model
3) Curse of dimensionality
4) Data are not linearly separable

PCA of TCGA BRCA Samples with Pam50 Genes

PCA with pam50: Label by Subtype vs. by GMM Clusters

Label by subtype

Label by GMM clusters in high-dimension accuracy 65%

PCA with pam50: Label by GMM vs. k-means Clusters

Label by GMM clusters in high-dimension accuracy 65%

Label by k-means clusters in high-dimension

TCGA BRCA samples: label by k-means cluster; HD accuracy 59\%

Comparison Between Subtype and GMM vs. k-means Cluster (HD)

	Basal	Her2	LumA	LumB	Normal
clust1	165	0	0	0	6
clust2	8	70	19	22	6
clust3	0	0	$\mathbf{2 5 4}$	40	2
clust4	0	3	175	$\mathbf{1 3 1}$	5
clust5	0	0	$\mathbf{5 2}$	0	19

GMM

$$
\text { Accuracy }=(165+70+254+131+19) / 977=65.4 \%
$$

Match
Mismatch

	Basal	Her2	LumA	LumB	Normal
clust1	170	0	0	0	8
clust2	2	72	11	31	4
clust3	0	0	$\mathbf{2 1 4}$	76	0
clust4	1	1	82	$\mathbf{8 6}$	0
clust5	0	0	$\mathbf{1 9 3}$	0	26

K-means

PCA with pam50: Label by Subtype vs. by GMM Clusters

Label by subtype
Label by GMM clusters with 2 PCs
accuracy 67%

PCA with pam50: Label by GMM vs. k-means Clusters

Label by GMM clusters with 2 PCs
accuracy 67%

Label by k-means clusters with 2 PCs
accuracy 56\%
TCGA BRCA samples: label by k-means cluster; LD

Comparison Between Subtype and GMM vs. k-means Cluster (LD)

	Basal	Her2	LumA	LumB	Normal
clust1	167	3	0	0	9
clust2	6	55	0	19	2
clust3	0	0	$\mathbf{3 3 6}$	34	11
clust4	0	6	64	81	0
clust5	0	9	$\mathbf{1 0 0}$	59	16

GMM

$$
\text { Accuracy }=(167+55+336+81+16) / 977=67 \%
$$

Match
Mismatch

K-means

	Basal	Her2	LumA	LumB	Normal
clust1	166	1	0	0	9
clust2	7	65	11	33	2
clust3	0	2	$\mathbf{2 2 7}$	1	27
clust4	0	2	66	87	0
clust5	0	3	$\mathbf{1 9 6}$	72	0

$$
\text { Accuracy }=(166+65+227+87) / 977=55.7 \%
$$

Jensen-Shannon Divergence vs. Number of Cluster (LD)

Mixture of Univariate Gaussian Distribution

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \underbrace{\substack{\text { Component } \\ \forall k: \pi_{k} \geqslant 0}}_{\substack{\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}}
$$

Mixture of Bivariate Gaussian Distributions

Single Gaussian

$p(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)$

Mixture of two Gaussians

$p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \underbrace{\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k}\right)}_{\text {Mixing coefficient }}$

Algorithm of GMM: Maximal Likelihood Estimate

$\prod_{j=1}^{m} \sum_{k=1}^{K} \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{k}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(\mathbf{x}_{j}-\mu_{k}\right)\right] P(y=k)$
m observations
k mixture model of Gaussian distributions
μ_{k} is centroid coordinate of kth cluster
Σ_{k} is covariance matrix of kth cluster
$\mathrm{P}(\mathrm{y}=\mathrm{k})$ is the probability of observation y as a member of cluster k

$$
\left(\mathbf{x}_{j}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(\mathbf{x}_{j}-\mu_{k}\right) \text { is Mahalanobis distance }
$$

Algorithm of GMM: Expectation Maximization (EM)

Initialization: initialize k centroids with hierarchical clustering or k -means or random points

Alternating between the following two steps until converge
E step: compute expected probability of each datapoint as a member for each class (soft assignment)

$$
\mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right) \propto p_{k}^{(t)} \mathrm{p}\left(x_{j} \mid \mu_{k}^{(t)}, \Sigma_{k}^{(t)}\right)
$$

M step: update Gaussian distribution parameters for each class

$$
\begin{gathered}
\mu_{k}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right) x_{j}}{\sum_{j} \mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right)} \quad \Sigma_{k}^{(t+1)}=\frac{\left.\sum_{j} \mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right)\left[x_{j}-\mu_{k}^{(t+1)}\right] x_{j}-\mu_{k}^{(t+1)}\right]^{T}}{\sum_{j} \mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right)} \\
\lambda_{t}=\left\{\mu_{1}{ }^{(t)}, \mu_{2}^{(t)} \ldots \mu_{K}{ }^{(t)}, \sum_{1}{ }^{(t)}, \sum_{2}{ }^{(t)} \ldots \sum_{K}{ }^{(t)}, \boldsymbol{p}_{1}{ }^{(t)}, p_{2}^{(t)} \ldots p_{K}{ }^{(t)}\right\}
\end{gathered}
$$

Comparison Between GMM and k-means Clustering

Initialization: initialize k centroids with hierarchical clustering or k-means

Alternating between the following two steps until converge
E step: compute expected probability of each datapoint as a member for each class

$$
\mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right) \propto p_{k}^{(t)} \mathbf{p}\left(x_{j} \mid \mu_{k}^{(t)}, \Sigma_{k}^{(t)}\right)
$$

M step: update Gaussian distribution parameters for each class

$$
\begin{gathered}
\mu_{k}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right) x_{j}}{\sum_{j} \mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right)} \quad \Sigma_{k}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right)\left[x_{j}-\mu_{k}^{(t+1)}\right]\left[x_{j}-\mu_{k}^{(t+1)}\right]^{T}}{\sum_{j} \mathrm{P}\left(Y_{j}=k \mid x_{j}, \lambda_{t}\right)} \\
\lambda_{t}=\left\{\mu_{1}^{(t)}, \mu_{2}^{(t)} \ldots \mu_{K}^{(t)}, \sum_{1}(t), \sum_{2}^{(t)} \ldots \sum_{K}^{(t)}, p_{1}^{(t)}, p_{2}^{(t)} \ldots p_{K}^{(t)}\right\}
\end{gathered}
$$

Outline of Clustering Methods

GMM: Gaussian Mixture Model
LDA: Latent Dirichlet Allocation
Contributed by Emily Tai
NMF: Non-negative matrix factorization

