

Understanding Tumor Heterogeneity and Plasticity Through the Lens of Cancer Stem Cell Model and Mathematical Modeling

Drug-tolerant persister (DTP) and cancer dynamics

Maxwell Lee

High-dimension Data Analysis Group Laboratory of Cancer Biology and Genetics Center for Cancer Research National Cancer Institute

June 21, 2021

Understanding Biology with Mathematical Modeling

Priming vs. Desensitization

Figure 1 Averaged time traces

Mudla et al. Elife 2020, 9:e58825

USP18 is Required for Desensitization

USP18: ubiquitin-specific peptidase 18

USP18-KD

Averaged time traces

Figure 2

Mudla et al. Elife 2020, 9:e58825

Figure 3

Mudla et al. Elife 2020, 9:e58825

ODE for the Kinetic Model

$$\frac{d}{dt}IRF9 = I(t) \bullet (k_4 + pf) \bullet nf$$

$$\frac{d}{dt}USP18 = I(t) \bullet S_u \bullet (k_5 + pf) \bullet nf$$

$$pf = k_1 \bullet \frac{IRF9}{k_2 + IRF9} \qquad nf = \frac{k_3}{k_3 + USP18}$$

I(t) = 0 (without IFN)I(t) = 1 (with IFN)

 $S_{u} = \begin{cases} 0, \text{ when the IFN input time } < \tau \\ 1, \text{ when the IFN input time } \geq \tau \end{cases}$

Decay of IRF9 and USP18 is low, therefore not included in the model

CFP-USP18 Reporter

Figure 4

P_{*IRF9*}-YFP and **P**_{*USP18*}-CFP in Response to IFN-α

Time trace of a single cell

Distributions of P_{IRF9} and P_{USP18} Activation Times in Single Cells

Figure 4C

Distributions of Delay Times in Single Cells

n = 2021 cells

Figure 4D

Time-lapse Images of Cells over Multiple Cell Divisions

Figure 4-S3A

Distributions of Delay Times vs. Cell Cycle Progression

Stochastic DE with Cell Cycle Gating of USP18 Upregulation

Figure 6A

Drug-Tolerant Persister (DTP) Bacterial Persistence as a Phenotypic Switch: non-genetic and reversible

Balaban et al. Science 2004, 305:1622 WB Bigger, *Lancet* ii, 497 (1944)

Drug-Tolerant Persister (DTP)Bacterial Persistence as a Phenotypic Switch:hipA7non-genetic and reversible

Figure 1Balaban et al. Science 2004, 305:1622

Bacterial Persistence as a Phenotypic Switch: non-genetic and reversible

Persisters constitute 1~5% of cells

Figure 1 Balaban et al. Science 2004, 305:1622

Bacterial Persistence as a Phenotypic Switch: non-genetic and reversible

hipA7

Figure S1

Balaban et al. Science 2004, 305:1622

Bacterial Persistence as a Phenotypic Switch: non-genetic and reversible

 $\mu_{p} \approx 0$ $a \approx 0$ $b \approx 0.07$

Figure 2 Balaban et al. Science 2004, 305:1622

Drug-Tolerant Persister (DTP) PC9 NSCLC cells 100 % Cell Survival 80 60 40 20 0 0.001 0.01 0 0.1 0.27% at $2 \ \mu M$ Gefitinib [µM] for 3 days EGFR tyrosine kinase inhibitors (TKIs)

Figure 1A

Sherma et al. Cell 2010, 141:69

Drug-Tolerant Persister (DTP)

ERL: erlotinib

DTP: treated with drug For 9 days

DTEP: drug-tolerant expanded persister treated with drug For 33 days 20% DTPs develop into DTEPs

CSC Marker CD133 is Expressed in DTPs

Figure 2

CD133 Expression in DTEP Is Similar to PC9

Figure S2B

DTPs Revert back to Drug-Sensitive Phenotype after Re-expansion in Drug-free Medium

Figure 2E

DTEPs Revert back to Drug-Sensitive Phenotype after 29 Passages in Drug-free Medium

Figure 2F

DTEPs Revert back to Drug-Sensitive Phenotype after 31 Passages in Drug-free Medium G

Drug Tolerance Requires Histone Demethylase KDM5A

Drug Tolerance Requires Histone Demethylase KDM5A

Figure 3D

Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy

5-FU/LV: 5-fluorouracil and leucovorin CPT-11: irinotecan FOLFIRI: 5-FU/LV and CPT-11

CPT: Camptothecin

Rehman et al. Cell 2021, 184:226

Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy

Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy

Figure 1C

Rehman et al. Cell 2021, 184:226

Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy

Figure 1F

Rehman et al. Cell 2021, 184:226

Reinjection of CPT-11-treated Tumors into New Mice Remained Sensitive to CPT-11 Treatment

Rehman et al. Cell 2021, 184:226

Long-Term CPT-11 Treatment Gives Rise to Irreversibly Resistant Tumors

Rehman et al. Cell 2021, 184:226

Figure S2D

Long-Term CPT-11 Treatment Gives Rise to Irreversibly Resistant Tumors

Rehman et al. Cell 2021, 184:226

Figure S2H

Reinjection of CPT Resistant Tumors into New Mice Maintained Resistance to CPT

Figure S2I Rehman et al. Cell 2021, 184:226

Barcode Experiment to Study Genetic Heterogeneity

Rehman et al. Cell 2021, 184:226

Figure 2A

The Enriched Barcodes Were Unique Across All Tumors

No selection of a pre-existing cell subpopulation that gave rise to DTPs

Figure 2B

Rehman et al. Cell 2021, 184:226

Mean Cumulative Clone Size Distribution

Mean Cumulative Clone Size Distribution

Estimated Power law Slope for Individual Tumors

Figure 3C

Rehman et al. Cell 2021, 184:226

Power Law Distribution

 $p\left(n
ight)\sim n^{-\left(1+lpha
ight)}$

$Q\left(n ight)=\sum_{n'>n}p\left(n' ight)\sim n^{-lpha}$

Q(n): cumulative distribution

Rehman et al. Cell 2021, 184:226

Log-linear Distribution from Selective Dynamics

n is the size of clone *i* undergoing stochastic birth-death process

$$p_i\left(n
ight) = \lambda_i e^{-n\lambda_i}
onumber \ p\left(\lambda
ight) = b^a e^{-b\lambda} \lambda^{a-1} / \Gamma\left(a
ight)
onumber \ p\left(n
ight) = \int d\lambda \lambda e^{-n\lambda} p\left(\lambda
ight) = rac{a/b}{\left(n/b+1
ight)^{1+a}}
onumber \ p\left(n
ight) \sim n^{-(1+a)}$$

Rehman et al. Cell 2021, 184:226

Sub-exponential Tumor Growth Kinetics

 $\dot{N} \sim N^{1-lpha}$

Figure 3E

Rehman et al. Cell 2021, 184:226

Understanding Biology with Mathematical Modeling

