

Dimension Reduction Methods: From PCA to TSNE and UMAP

Maxwell Lee

High-dimension Data Analysis Group
Laboratory of Cancer Biology and Genetics
Center for Cancer Research
National Cancer Institute

May 28, 2020

Road Map for Dimension Reduction Methods

Flow Chart of ScRNAseq Analyses with Seurat Package

Preprocessing Steps in Seurat Package

Preprocessing	function	Description
QC	Select cells	percent.mt < 5%
Normalization	Normalizing cells	TP10K
Variable genes	Most variable genes	nfeatures = 2000
Standardization	Standardization across cells	z score

Effects of Using Percent of Mitochondrial Gene Cutoff on UMAP

Dimension Reduction 2

(percent.mt < 5)

Clusters 0-11 are identical to the left plot

Cluster 12 has the additional cells (percent.mt

Clustering and Dimension Reduction 2

Dimension Reduction 2

Clustering and Dimension Reduction 2

Clustering and Dimension Reduction 2

Clustering and Dimension Reduction 2

Clustering and Dimension Reduction 2

Clustering and Dimension Reduction 2 Label with alphabet and its mapping

Tissue Subtype of Clusters with Percent.mt5

Rapolas Zilionis..Allon Klein 2019 Immunity 50, 1317-1334

Tissue Subtype of Clusters: Percent.mt5 vs Percent.mt10

Comparison of Cluster Tissue Subtypes

mt10.tissue	cluster	mt5.tissue
Mac1	a-12	
Mono1	b-2	Mono1
N5	c-3	N5
N5	d-0	N5
N5	e-12	
DC2	f-4	DC2
В	g-12	
Mac1	h-12	
DC3	i-6	DC3
Mac1	j-7	Mac1
NK	k-11	NK
Mac1	I-12	
DC1	m-10	DC1
pDC	n-12	
Mono3	o-12	

Fraction of the Cells with Percent.mt Larger Than 5

0.00

d

ė

ģ

seurat_clusters

Mono1: Cluster b (Mt10) vs Cluster 2 (Mt5) Specific Genes

mt5.cl.2: mt5 cluster 2 mt10.cl.b: mt10 cluster b

Numbers outside of the pie chart are numbers of cells

Cluster-specific genes Common: 307 genes

Unique to mt5 cluster 2: 223 genes Unique to mt10 cluster b: 29 genes

N5: Cluster c (Mt10) vs Cluster 3 (Mt5) Specific Genes

Numbers outside of the pie chart are numbers of cells

Cluster-specific genes Common: 112 genes

Unique to mt5 cluster 0: 11 genes

Unique to mt10 cluster d: 174 genes

TSNE vs. UMAP

TSNE vs. UMAP

 ρ_i : shortest distance of x_i neighbors

Euclidean Distance and Other Distance Metrics

- Euclidean distance vs geodesic distance
- Euclidean distance vs Mahalanobis distance
- Curse of dimensionality

Curse of Dimensionality

 50% of each dimension is sufficient to cover 25% of a 2dimensional space

(II) 50% of each dimension is only sufficient to cover 12.5% of a 3dimensional space

Uniform Manifold Approximation and Projection (UMAP)

$$w((x_i, x_{i_j})) = \exp\left(\frac{-\max(0, d(x_i, x_{i_j}) - \rho_i)}{\sigma_i}\right)$$
$$B = A + A^{\top} - A \circ A^{\top}$$

$$\sum_{j=1}^{k} \exp\left(\frac{-\max(0, d(x_i, x_{i_j}) - \rho_i)}{\sigma_i}\right) = \log_2(k)$$

Uniform Manifold Approximation and Projection (UMAP)

High-dimension

$$w((x_i, x_{i_j})) = \exp\left(\frac{-\max(0, d(x_i, x_{i_j}) - \rho_i)}{\sigma_i}\right)$$

$$B = A + A^{\top} - A \circ A^{\top}$$

Low-dimension

Laplacian Eigenmaps

$$\Phi(\mathbf{x}, \mathbf{y}) = \left(1 + a(\|\mathbf{x} - \mathbf{y}\|_2^2)^b\right)^{-1}$$

Cross.entropy

Fuzzy Simplicial Sets

Uniform Manifold Approximation and Projection (UMAP)

UMAP cost function

$$C((A, \mu), (A, \nu)) = \sum_{a \in A} \mu(a) \log \left(\frac{\mu(a)}{\nu(a)}\right) + (1 - \mu(a)) \log \left(\frac{1 - \mu(a)}{1 - \nu(a)}\right)$$

Road Map for Dimension Reduction Methods

Outline of Trajectory Analysis

Trajectory Analysis (Monocle II)

Xiaojie Qiu..Cole Trapnell Nat Methods 14:979-982 2017

Pseudotime (Monocle II)

Flowchart of Trajectory Analysis with Monocle Package

Road Map for Dimension Reduction Methods

