Dimension Reduction Methods: From PCA to TSNE and UMAP

Maxwell Lee

High-dimension Data Analysis Group
Laboratory of Cancer Biology and Genetics
Center for Cancer Research
National Cancer Institute

May 28, 2020

Road Map for Dimension Reduction Methods

Flow Chart of ScRNAseq Analyses with Seurat Package

Preprocessing Steps in Seurat Package

Effects of Using Percent of Mitochondrial Gene Cutoff on UMAP

Clustering and Dimension Reduction 2

Dimension Reduction 2
Clusters 0-11 are identical to the left plot (percent.mt <5)
Cluster 12 has the additional cells (percent.mt between 5 and 10)
percent.mt < 10; $n=4540$

How Is UMAP Affected by New Clustering Analysis?

Dimension Reduction 2

Clustering and Dimension Reduction 2

How Is UMAP Affected by New Clustering Analysis?

Clustering and Dimension Reduction 2

Clustering and Dimension Reduction 2

How Is UMAP Affected by New Clustering Analysis?

Clustering and Dimension Reduction 2

Clustering and D Label with alphal
cluster 0
1 1
2
3 2
3
percent.mt < 10; n=4!
-5 -5

$$
\begin{aligned}
& N_{1}^{\prime} \\
& \sum_{j}^{\frac{1}{c}}
\end{aligned}
$$

-

How Is UMAP Affected by New Clustering Analysis?

Clustering and Dimension Reduction 2

Clustering and Dimension Reduction 2 Label with alphabet and its mapping

Tissue Subtype of Clusters with Percent.mt5

DC: dendritic cells
Mac: macrophage Mono: monocyte N : neutrophils NK : natural killer cells
cluster

0

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8

9
10
11

Signature: gene signatures Genes: genes from Cibersort GLM: generalized linear model

Rapolas Zilionis..Allon Klein 2019 Immunity 50, 1317-1334

Tissue Subtype of Clusters: Percent.mt5 vs Percent.mt10

Comparison of Cluster Tissue Subtypes

mt10.tissue	cluster	mt5.tissue
Mac1	$\mathrm{a}-12$	
Mono1	$\mathrm{b}-2$	Mono1
N5	$\mathrm{c}-3$	N5
N5	$\mathrm{d}-0$	N5
N5	$\mathrm{e}-12$	
DC2	$\mathrm{f}-4$	$\mathrm{DC2}$
B	$\mathrm{g}-12$	
Mac1	$\mathrm{h}-12$	
DC3	$\mathrm{i}-6$	$\mathrm{DC3}$
Mac1	$\mathrm{j}-7$	Mac1
NK	$\mathrm{k}-11$	NK
Mac1	$\mathrm{l}-12$	
DC1	$\mathrm{m}-10$	DC1
pDC	$\mathrm{n}-12$	
Mono3	$\mathrm{o}-12$	

Fraction of the Cells with Percent.mt Larger Than 5

Bargraph of fraction of new cells

Mono1: Cluster b (Mt10) vs Cluster 2 (Mt5) Specific Genes

$\mathrm{mt5}$.cl.2: mt 5 cluster 2
$\mathrm{mt} 10 . \mathrm{cl} . \mathrm{b}$: mt 10 cluster b

Numbers outside of the pie chart are numbers of cells

Cluster-specific genes Common: 307 genes
Unique to mt5 cluster 2: 223 genes
Unique to mt10 cluster b: 29 genes

N5: Cluster c (Mt10) vs Cluster 3 (Mt5) Specific Genes

cluster-c

Numbers outside of the pie chart are numbers of cells

Cluster-specific genes
Common: 112 genes
Unique to mt 5 cluster 0: 11 genes Unique to mt 10 cluster d: 174 genes

TSNE vs. UMAP

TSNE vs. UMAP

$$
\begin{aligned}
& \operatorname{Perp}\left(P_{i}\right)=2^{H\left(P_{i}\right)} \\
& H\left(P_{i}\right)=-\sum_{j} p_{j \mid i} \log _{2} p_{j \mid i}^{\text {Bistance.Marixix| }}
\end{aligned}
$$

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

$$
p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 n}
$$

Distance.Matrix2

Weight.function
$w\left(\left(x_{i}, x_{i_{j}}\right)\right)=\exp \left(\frac{-\max \left(0, d\left(x_{i}, x_{i_{j}}\right)-\rho_{i}\right)}{\sigma_{i}}\right)$
$B=A+A^{\top}-A \circ A^{\top}$
ρ_{i} : shortest distance of x_{i} neighbors

Euclidean Distance and Other Distance Metrics

- Euclidean distance vs geodesic distance
- Euclidean distance vs Mahalanobis distance
- Curse of dimensionality

Curse of Dimensionality

Uniform Manifold Approximation and Projection (UMAP)

$$
\begin{aligned}
& w\left(\left(x_{i}, x_{i_{j}}\right)\right)=\exp \left(\frac{-\max \left(0, d\left(x_{i}, x_{i_{j}}\right)-\rho_{i}\right)}{\sigma_{i}}\right) \\
& B=A+A^{\top}-A \circ A^{\top} \\
& \sum_{j=1}^{k} \exp \left(\frac{-\max \left(0, d\left(x_{i}, x_{i_{j}}\right)-\rho_{i}\right)}{\sigma_{i}}\right)=\log _{2}(k)
\end{aligned}
$$

Uniform Manifold Approximation and Projection (UMAP)

$$
\begin{gathered}
\text { Weight.function } \\
w\left(\left(x_{i}, x_{i_{j}}\right)\right)=\exp \left(\frac{-\max \left(0, d\left(x_{i}, x_{i_{j}}\right)-\rho_{i}\right)}{\sigma_{i}}\right) \quad \text { Low-dimension } \\
B=A+A^{\top}-A \circ A^{\top} \\
\text { Laplacian Eigenmaps } \\
\text { Cross.entropy }
\end{gathered}
$$

Fuzzy Simplicial Sets

Uniform Manifold Approximation and Projection (UMAP)

$$
\begin{aligned}
& C=K L(P \| Q)=\sum_{i} \sum_{j} p_{i j} \log \frac{p_{i j}}{q_{i j}} \cdot \underbrace{\text { Cross.entropy }}_{\text {Weight.function }} \\
& C((A, \mu),(A, \nu))=\sum_{a \in A} \mu(a) \log \left(\frac{\mu(a)}{\nu(a)}\right)+(1-\mu(a)) \log \left(\frac{1-\mu(a)}{1-\nu(a)}\right)
\end{aligned}
$$

Road Map for Dimension Reduction Methods

Outline of Trajectory Analysis

Trajectory Analysis (Monocle II)

Xiaojie Qiu..Cole Trapnell Nat Methods 14:979-982 2017

Pseudotime (Monocle II)

Xiaojie Qiu..Cole Trapnell Nat Methods 14:979-982 2017

Flowchart of Trajectory Analysis with Monocle Package

Road Map for Dimension Reduction Methods

