Understanding Tumor Heterogeneity and Plasticity Through the Lens of Cancer Stem Cell Model and Mathematical Modeling

Network Motifs and Dynamics of Cellular States

Maxwell Lee

High-dimension Data Analysis Group
Laboratory of Cancer Biology and Genetics
Center for Cancer Research
National Cancer Institute

May 24, 2021

Understanding Biology with Mathematical Modeling

GRN of Luminal and Basal States

Differential Equation Model of Gene Regulatory Network (GRN)

b_{1} and b_{2} are weights for mutual inhibition
a_{1} and a_{2} are weights for auto-activation
k_{1} and k_{2} are weights for degradation
n is Hill Coefficient
S is threshold of Hill function
Wang et al PNAS, 2011;108:8257-8262

Flow Diagram of Toggle Switch GRN

$a 1=a 2$	0
$b 1=b 2$	1
$k 1=k 2$	1
n	4
S	0.5

Quasi-Potential of GRN

$a 1=a 2$	0
$b 1=b 2$	1
$k 1=k 2$	1
n	4
S	0.5

Quasi-potential was calculated with R package QPot

Toggle Switch GRN with Auto-Activation

$a 1=a 2$	1
$b 1=b 2$	1
$k 1=k 2$	1
n	4
S	0.5

Quasi-Potential of GRN

Bifurcation Diagram

Two Regions Separated by Eigen Vector

Stochastic Differential Equation (DE) Model

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=\frac{a_{1} x_{1}^{n}}{S^{n}+x_{1}^{n}}+\frac{b_{1} S^{n}}{S^{n}+x_{2}^{n}}-k_{1} x_{1} \\
& \frac{d x_{2}}{d t}=\frac{a_{2} x_{2}^{n}}{S^{n}+x_{2}^{n}}+\frac{b_{2} S^{n}}{S^{n}+x_{1}^{n}}-k_{2} x_{2} \\
& d \mathbf{X}=f(\mathbf{X}) d t \quad \text { Deterministic DE } \\
& d \mathbf{X}=f(\mathbf{X}) d t+\sigma d \mathbf{W} \quad \text { Stochastic DE } \\
& \text { Wiener process } \\
& d X=-U^{\prime}(X) d t+\sigma d W \quad U \text { is quasi-potential }
\end{aligned}
$$

Nolting et al Ecology 2016;97:850-864

Stochastic Differential Equation (DE) Model

$$
d X=-U^{\prime}(X) d t+\sigma d W
$$

Fokker-Planck equation

$$
\begin{gathered}
\frac{\partial p(x, t)}{\partial t}=\frac{\partial}{\partial x}\left(U^{\prime}(x) p(x, t)\right)+\frac{\sigma^{2}}{2} \frac{\partial^{2} p(x, t)}{\partial x^{2}} \\
p_{s}(x)=\frac{1}{Z} \exp \left(-\frac{2 U(x)}{\sigma^{2}}\right) \\
p_{s}(x) \text { is steady state probability } \\
\mathrm{Z} \text { is normalization factor }
\end{gathered}
$$

Negative Feedback Motif of NF-кB Signaling Pathway

B

Figure 1
Hoffmann et al. Science 2002, 298:1241

Negative Feedback Motif of NF-кB Signaling Pathway

C

human U937 monocytes

mouse fibroblasts

Figure 1

Negative Feedback Motif of NF-кB Signaling Pathway

Figure 2 wild-type fibroblasts

IкB α Is Required For Oscillation of NF-кB Signal

Figure 2

IкB β / ε Causes Damped Oscillation of NF-кB Signal

D

Effect of $\mathrm{I}_{\kappa} \mathrm{B} \beta$ and $\mathrm{I}_{\kappa} \mathrm{B} \varepsilon$

Reduced by 5-fold

Baseline in WT

Increased by 7-fold

Figure 2

NF-кB response to TNF α of various durations

Figure 3

NF-кB Signal in WT Shows Bimodal Response

 The Bimodal Response Requires Iк $\mathrm{B} \alpha$

Figure 4

RANTES Activation Requires Persistent TNF α Stimulation

RANTES Activation Requires Persistent TNF α Stimulation

Negative Feedback Motif of NF-кB Signaling Pathway

$3 \mathrm{I} \kappa \mathrm{B} \alpha / \beta / \varepsilon$ interact with NF-кB $3 \mathrm{I} \kappa \mathrm{B} \alpha / \beta / \varepsilon$ interact with IKK
Figure 1
NF-кB translocation

Negative Feedback Motif of NF-кB Signaling Pathway

x: NF-кB
y : $\mathrm{I} \kappa \mathrm{B} \alpha$

$$
\begin{gathered}
\dot{x}=S-\alpha x-\beta y, \\
\dot{y}=\gamma x-\delta y, \\
\mathrm{~J}=\left|\begin{array}{cc}
-\alpha & -\beta \\
\gamma & -\delta
\end{array}\right|
\end{gathered}
$$

Classification of 2D ODE Linear Systems

$$
\begin{aligned}
& \dot{x}=S-\alpha x-\beta y, \\
& \dot{y}=\gamma x-\delta y, \\
& J=\left|\begin{array}{cc}
-\alpha & -\beta \\
\gamma & -\delta
\end{array}\right| \\
& \mathrm{t}_{\mathrm{r}}=-(\alpha+\delta) \\
& \mathrm{d}_{\mathrm{et}}=\alpha \delta+\beta \gamma \\
& \lambda_{1,2}=\frac{1}{2}\left\{t_{r} \pm \sqrt{t_{r}^{2}-4 d_{e t}}\right\} \\
& \begin{aligned}
\mathrm{t}_{\mathrm{r}} & =\lambda_{1}+\lambda_{2} \\
\mathrm{~d}_{\mathrm{et}} & =\lambda_{1} \lambda_{2}
\end{aligned}
\end{aligned}
$$

Classification of 2D ODE Linear Systems

Negative Feedback Motif of NF-кB Signaling Pathway

oscillation: center
damped oscillation: stable spiral
over-damped oscillation: stable spiral

Negative Feedback Motif of NF-кB Signaling Pathway

D

Figure 2

Reduced by 5-fold slightly damped oscillation

Baseline in WT damped oscillation

Increased by 7-fold over-damped oscillation

Negative Feedback Motif of NF-кB Signaling Pathway

 slightly damped oscillation

Iк $\mathrm{B} \alpha$ controls oscillation no oscillation

Iк $\mathrm{B} \alpha$ controls oscillation no oscillation

Figure 2

Understanding Biology with Mathematical Modeling

