

Understanding Tumor Heterogeneity and Plasticity Through the Lens of Cancer Stem Cell Model and Mathematical Modeling

Network Motifs and Dynamics of Cellular States

Maxwell Lee

High-dimension Data Analysis Group Laboratory of Cancer Biology and Genetics Center for Cancer Research National Cancer Institute

May 24, 2021

Understanding Biology with Mathematical Modeling

GRN of Luminal and Basal States

Differential Equation Model of Gene Regulatory Network (GRN)

Flow Diagram of Toggle Switch GRN

a1=a2	0
<i>b1=b2</i>	1
k1=k2	1
n	4
S	0.5

ESR1

Quasi-Potential of GRN

with R package QPot

Toggle Switch GRN with Auto-Activation

ESR1

Quasi-Potential of GRN

Bifurcation Diagram

Two Regions Separated by Eigen Vector

ESR1

Stochastic Differential Equation (DE) Model

$$\frac{dx_1}{dt} = \frac{a_1 x_1^n}{S^n + x_1^n} + \frac{b_1 S^n}{S^n + x_2^n} - k_1 x_1$$
$$\frac{dx_2}{dt} = \frac{a_2 x_2^n}{S^n + x_2^n} + \frac{b_2 S^n}{S^n + x_1^n} - k_2 x_2$$
$$d\mathbf{X} = f(\mathbf{X}) dt$$
Deterministic DE

 $d\mathbf{X} = f(\mathbf{X}) \, dt + \sigma \, d\mathbf{W}$ Stochastic DE Wiener process

 $dX = -U'(X) dt + \sigma dW$ U is quasi-potential

Nolting et al Ecology 2016;97:850-864

Stochastic Differential Equation (DE) Model

$$dX = -U'(X) dt + \sigma dW$$

Fokker-Planck equation

$$\frac{\partial p(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(U'(x)p(x,t) \right) + \frac{\sigma^2}{2} \frac{\partial^2 p(x,t)}{\partial x^2}$$
$$p_s(x) = \frac{1}{Z} \exp\left(-\frac{2U(x)}{\sigma^2}\right)$$

 $p_s(x)$ is steady state probability Z is normalization factor

Hoffmann et al. Science 2002, 298:1241

ΙκΒα Is Required For Oscillation of NF-κB Signal

ΙκΒβ/ε Causes Damped Oscillation of NF-κB Signal

NF- κB response to TNF α of various durations

Figure 3

NF-kB Signal in WT Shows Bimodal Response

The Bimodal Response Requires $I\kappa B\alpha$

Figure 4

RANTES Activation Requires Persistent TNFa Stimulation

RANTES: CCL5 IP-10: CXCL10

RANTES Activation Requires Persistent TNFa Stimulation

RANTES: CCL5 IP-10: CXCL10

3 ΙκΒα/β/ε interact with NF-κB
3 ΙκΒα/β/ε interact with IKK
NF-κB translocation

x: NF-κB y: ΙκΒα

 $\dot{x} = S - \alpha x - \beta y,$ $\dot{y} = \gamma x - \delta y,$

$$J = \begin{vmatrix} -\alpha & -\beta \\ \gamma & -\delta \end{vmatrix}$$

Classification of 2D ODE Linear Systems

Classification of 2D ODE Linear Systems

oscillation: center damped oscillation: stable spiral over-damped oscillation: stable spiral

Effect of IkB β and IkB ϵ

Reduced by 5-fold slightly damped oscillation

Baseline in WT damped oscillation

Increased by 7-fold over-damped oscillation

slightly damped oscillation

IkB α controls oscillation no oscillation

IkB α controls oscillation no oscillation

Understanding Biology with Mathematical Modeling

