

Dimension Reduction Methods: From PCA to TSNE and UMAP

Maxwell Lee

High-dimension Data Analysis Group
Laboratory of Cancer Biology and Genetics
Center for Cancer Research
National Cancer Institute

May 22, 2020

Outline for Dimension Reduction Methods

Data Matrix (Table)

$$\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ & & & & & \\ & & & & & \\ x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}$$

 X_{np} n observations and p variables

Multivariate Linear Regression Model

y is response variable or dependent variable

 $x_1...x_p$ are independent variables

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_p x_p + \epsilon$$
$$y = X\beta + \epsilon$$

Application of Simple Linear Regression Model

$$y = \beta_0 + \beta_1 x + \epsilon$$

У	X	application	
Tumor size	Gene expression	correlation	
Gene expression	Treatment vs control	t-test	
Treatment response	Gene expression	Classification (glm)	

Unsupervised Analysis

$$\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ & & & & & \\ & & & & & \\ x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}$$

- We do not have data for response variable y or sample label
- We are more interested in intrinsic relationship among samples

Unsupervised Statistical Learning

GMM: Gaussian Mixture Model

PCA: Principal Component Analysis

MDS: Multidimensional scaling

TSNE: T-distributed Stochastic Neighbor Embedding

UMAP: Uniform Manifold Approximation and Projection

The Presence of Correlation Between Variables Is the Reason Why We Can Reduce Dimension by PCA

$$egin{pmatrix} X_1 \ X_2 \end{pmatrix} \sim \mathcal{N}\left(egin{pmatrix} 0 \ 0 \end{pmatrix}, egin{pmatrix} 1 &
ho \
ho & 1 \end{pmatrix}
ight)$$

$$r = \rho$$

	μ_1	μ_2	σ_1	σ_2	ρ
d1	0	0	1	1	0
d2	0	0	1	1	0.6
d3	0	0	1	1	0.9
d4	0	0	1	1	0.99

$$n = 400$$

Principal Component Analysis (PCA)

Karl Pearson 1901; Harold Hotelling 1933-1936

Principal Component Analysis (PCA)

Karl Pearson 1901

Principal Component Analysis (PCA)

Geometric View of PCA: Rotation of Coordinates

Correlation Between Variables Can Result from Heterogeneity in Sample

Group1 Group2

	μ_1	μ_2	μ_1	μ_2
d1	0	0	0	0
d2	0	0	3	3
d3	0	0	6	6
d4	0	0	20	20

Group1 Group2

	μ_1	μ_2	μ_1	μ_2
d1	0	0	3	3
d2	0	0	6	6

PCA: Samples with Three Groups

$$\mathbf{X} \sim \mathcal{N}(oldsymbol{\mu}, \, oldsymbol{\Sigma})$$

$$\sigma_{ii} = 1$$
$$\sigma_{ij} = 0$$

Group1	Group2	Group3
--------	--------	--------

	μ_1	μ_2	μ_1	μ_2	μ_1	μ_2
d1	0	0	0	0	0	0
d2	0	0	3	0	0	3
d3	0	0	6	0	0	6
d4	0	0	20	0	0	20

PCA: Samples with Three Groups

 $\mathbf{X} \sim \mathcal{N}(oldsymbol{\mu}, \, oldsymbol{\Sigma})$

$$\sigma_{ii} = 1$$

 $\sigma_{ij} = 0$

Group1 Group2 Group3

	μ_1	μ_2	μ_1	μ_2	μ_1	μ_2
d1	0	0	6	0	0	6
d2	0	0	20	0	0	20

Variance Accounted for by PC1

PCA Analysis of TCGA Breast Cancer RNAseq Data

Variance of Principal Components Are Ranked from the Highest to the Lowest

Filtering Out Genes of Low Variance Increases Percent of Variance Accounted for by PC1

Correlation Between Principal Components and Phenotypes of Breast Cancer Data

Variation in Histological Type Is Associated with PC2

TCGA BRCA samples: n=977, histological_type

Removing Heterogeneity in Histological Type Reduces PC2 Variance and Increases PC1 Variance

Algorithm of PCA: How Does PCA Find the Direction of PC1?

Choose w to maximize w^TSw subject to $w^Tw = 1$

The Direction of PC1 Is the Eigen Vector with the Highest Eigen Value

L

Choose w to maximize w^TSw subject to $w^Tw = 1$

$$L(w, \lambda) = w^{T}Sw - \lambda(w^{T}w - 1)$$

$$\frac{\partial L}{\partial \mathbf{w}} = 2\mathbf{S}\mathbf{w} - 2\lambda\mathbf{w}$$

$$Sw = \lambda w$$

w is the eigen vector and λ is eigen value

Variance of PCs Are Eigen Value and Are Additive

$$var(z) = w^{T}Sw$$
$$= w^{T}\lambda w$$
$$= \lambda$$

There are p pairs of eigen vectors and eigen values

$$var(Z) = \lambda_1 + \lambda_2 \dots + \lambda_p$$

