Dimension Reduction Methods: From PCA to TSNE and UMAP

Maxwell Lee

High-dimension Data Analysis Group
Laboratory of Cancer Biology and Genetics
Center for Cancer Research
National Cancer Institute

May 22, 2020

Outline for Dimension Reduction Methods

Data Matrix (Table)

$$
\left[\begin{array}{llll}
\mathrm{X}_{11} & \mathrm{X}_{12} & \ldots & \mathrm{X}_{1 \mathrm{p}} \\
\mathrm{X}_{21} & \mathrm{X}_{22} & \ldots & \mathrm{X}_{2 \mathrm{p}} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\mathrm{X}_{\mathrm{n} 1} & \mathrm{X}_{\mathrm{n} 2} & \ldots & \mathrm{X}_{\mathrm{np}}
\end{array}\right]
$$

$X_{n p}$
n observations and p variables

Multivariate Linear Regression Model

y is response variable or dependent variable $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{p}}$ are independent variables

$$
\begin{aligned}
& {\left[\begin{array}{c:cccc}
y_{1} & x_{11} & x_{12} & \ldots & x_{1 p} \\
y_{2} & x_{21} & x_{22} & \ldots & x_{2 p} \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
y_{n} & x_{n 1} & x_{n 2} & \ldots & x_{n p}
\end{array}\right]} \\
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} \ldots+\beta_{\mathrm{p}} x_{p}+\varepsilon \\
& y=X \beta+\varepsilon
\end{aligned}
$$

Application of Simple Linear Regression Model

$$
y=\beta_{0}+\beta_{1} x+\varepsilon
$$

y	x	application
Tumor size	Gene expression	correlation
Gene expression	Treatment vs control	t-test
Treatment response	Gene expression	Classification (glm)

Unsupervised Analysis

$$
\left[\begin{array}{llll}
\mathrm{X}_{11} & \mathrm{X}_{12} & \ldots & \mathrm{X}_{1 \mathrm{p}} \\
\mathrm{X}_{21} & \mathrm{X}_{22} & \ldots & \mathrm{X}_{2 \mathrm{p}} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\mathrm{X}_{\mathrm{n} 1} & \mathrm{X}_{\mathrm{n} 2} & \ldots & \mathrm{X}_{\mathrm{np}}
\end{array}\right]
$$

- We do not have data for response variable y or sample label
- We are more interested in intrinsic relationship among samples

Unsupervised Statistical Learning

Clustering analysis
hierarchical clustering, k-means GMM, spectral clustering

Dimension reduction PCA, MDS, TSNE, UMAP

GMM: Gaussian Mixture Model
PCA: Principal Component Analysis
MDS: Multidimensional scaling
TSNE: T-distributed Stochastic Neighbor Embedding
UMAP: Uniform Manifold Approximation and Projection

The Presence of Correlation Between Variables Is the Reason Why We Can Reduce Dimension by PCA

$$
\begin{gathered}
\binom{X_{1}}{X_{2}} \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right) \\
\mathrm{r}=\rho
\end{gathered}
$$

	μ_{1}	μ_{2}	σ_{1}	σ_{2}	ρ
d1	0	0	1	1	0
d2	0	0	1	1	0.6
d3	0	0	1	1	0.9
d4	0	0	1	1	0.99

$$
\mathrm{n}=400
$$

Principal Component Analysis (PCA)

Karl Pearson 1901; Harold Hotelling 1933-1936

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Geometric View of PCA: Rotation of Coordinates

Correlation Between Variables Can Result from Heterogeneity in Sample

PCA: Samples with Two Groups

$\binom{X_{1}}{X_{2}}$	$\sim \mathcal{N}\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)\right)$			
	$\rho=0$			
	Group1		Group2	
	μ_{1}	μ_{2}	μ_{1}	μ_{2}
d1	0	0	3	3
d2	0	0	6	6

$r=0.73$

group

- g1
- g2

PCA: Samples with Three Groups

PCA: Samples with Three Groups

$$
\begin{aligned}
\mathbf{X} & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\sigma_{\mathrm{ii}} & =1 \\
\sigma_{\mathrm{ij}} & =0
\end{aligned}
$$

Group1 Group2 Group3

	μ_{1}	μ_{2}	μ_{1}	μ_{2}	μ_{1}	μ_{2}
d1	0	0	6	0	0	6
d2	0	0	20	0	0	20

group

- $\quad \mathrm{g} 1$
- $\quad \mathrm{g} 2$
g3

Variance Accounted for by PC1

PCA Analysis of TCGA Breast Cancer RNAseq Data

TCGA BRCA samples: $\mathbf{n}=\mathbf{9 7 7}$, top $5 \mathbf{k}$ most variable genes

Variance of Principal Components Are Ranked from the Highest to the Lowest

Filtering Out Genes of Low Variance Increases Percent of Variance Accounted for by PC1

TCGA BRCA samples: $n=977$, top $5 k$ most variable genes

TCGA BRCA samples: $n=977$, all 20k genes

subtype

- Basal
- Her2
- LumA
- LumB
- Normal

Correlation Between Principal Components and Phenotypes of Breast Cancer Data

Variation in Histological Type Is Associated with PC2

TCGA BRCA samples: $\mathbf{n = 9 7 7}$, histological_type

histological_type

- ductal
- Iobular
- other

Removing Heterogeneity in Histological Type Reduces PC2 Variance and Increases PC1 Variance

TCGA BRCA samples: $\mathrm{n}=977$, top 5 k most variable genes

TCGA BRCA samples: $\mathbf{n = 6 8 8}$, infiltrating ductal carcinoma

Algorithm of PCA:
 How Does PCA Find the Direction of PC1?

$$
\begin{aligned}
& \mathrm{z}=\mathrm{Xw} \\
& \operatorname{var}(z)=(X w)^{T} X w \\
& \operatorname{var}(\mathrm{z})=\mathrm{w}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}} \mathrm{Xw}=\mathrm{w}^{\mathrm{T}} \mathrm{Sw}
\end{aligned}
$$

Choose w to maximize ${ }^{\text {T }}$ Sw subject to $W^{T} W=1$

The Direction of PC1 Is the Eigen Vector with the Highest Eigen Value

$$
\mathrm{Sw}=\lambda \mathrm{w}
$$

w is the eigen vector and λ is eigen value

Variance of PCs Are Eigen Value and Are Additive

$$
\begin{aligned}
\operatorname{var}(\mathrm{z}) & =\mathrm{w}^{\mathrm{T}} \mathrm{Sw} \\
& =\mathrm{w}^{\mathrm{T}} \lambda \mathrm{w} \\
& =\lambda
\end{aligned}
$$

There are p pairs of eigen vectors and eigen values

$$
\operatorname{var}(Z)=\lambda_{1}+\lambda_{2} \ldots+\lambda_{p}
$$

