

Understanding Tumor Heterogeneity and Plasticity Through the Lens of Cancer Stem Cell Model and Mathematical Modeling

Waddington's epigenetic landscape quantified with quasi-potential

Maxwell Lee

High-dimension Data Analysis Group Laboratory of Cancer Biology and Genetics Center for Cancer Research National Cancer Institute

May 10, 2021

Understanding Biology with Mathematical Modeling

Mammary Stem Cell Model

Toggle Switch Gene Regulatory Network (GRN)

Gardner et al Nature 2000, 403:339

Wang et al PNAS 2011, 108:8257

Differential Equation Model of Gene Regulatory Network (GRN)

GRN of Luminal and Basal States

Flow Diagram of Toggle Switch GRN

a1=a2	0
<i>b1=b2</i>	1
k1=k2	1
n	4
S	0.5

Quasi-Potential of GRN

with R package QPot

Waddington's Epigenetic Landscape

Toggle Switch GRN with Auto-Activation

Quasi-Potential of GRN

Bifurcation Diagram

Effect of Activation Coefficient on GRN

Quasi-Potential of GRN

a1	1.1
<i>a2</i>	1
b1=b2	1
k1=k2	1
n	4
S	0.5

a1=a2	1
<i>b1=b2</i>	1
<i>k1=k2</i>	1
п	4
S	0.5

Flow Diagram of GRN with Auto-Activation

a1=a2	1
<i>b1=b2</i>	1
k1=k2	1
n	4
S	0.5

Quasi-Potential of GRN

<i>a1</i>	0.9
<i>a2</i>	1
b1=b2	1
k1=k2	1
n	4
S	0.5

Flow Diagram of GRN with Auto-Activation

Effect of Inhibition Coefficient on GRN

Two Regions Separated by Eigen Vector

Stochastic Differential Equation (DE) Model

$$\frac{dx_1}{dt} = \frac{a_1 x_1^n}{S^n + x_1^n} + \frac{b_1 S^n}{S^n + x_2^n} - k_1 x_1$$
$$\frac{dx_2}{dt} = \frac{a_2 x_2^n}{S^n + x_2^n} + \frac{b_2 S^n}{S^n + x_1^n} - k_2 x_2$$
$$d\mathbf{X} = f(\mathbf{X}) dt$$
Deterministic DE

 $d\mathbf{X} = f(\mathbf{X}) dt + \sigma d\mathbf{W}$ Stochastic DE Wiener process

 $dX = -U'(X) dt + \sigma dW$ U is quasi-potential

Nolting et al Ecology 2016;97:850-864

Stochastic Differential Equation (DE) Model

$$dX = -U'(X) dt + \sigma dW$$

Fokker-Planck equation

$$\frac{\partial p(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(U'(x)p(x,t) \right) + \frac{\sigma^2}{2} \frac{\partial^2 p(x,t)}{\partial x^2}$$
$$p_s(x) = \frac{1}{Z} \exp\left(-\frac{2U(x)}{\sigma^2}\right)$$

 $p_s(x)$ is steady state probability Z is normalization factor

Chemical Reaction Kinetics

GRN of Hematopoietic Cell Fate Decision

Huang et al 2007, Developmental Biology 305:695

GRN of Hematopoietic Cell Fate Decision

Laslo et al 2006, Cell 126:755

GRN of EMT Mediated by microRNA

Understanding Biology with Mathematical Modeling

