Dimension Reduction Methods: From PCA to TSNE and UMAP

Maxwell Lee

High-dimension Data Analysis Group
Laboratory of Cancer Biology and Genetics
Center for Cancer Research
National Cancer Institute

$$
\text { May 7, } 2020
$$

Road Map for Dimension Reduction Methods

The Dot Product of Two Vectors is the Difference Between the Squared Distances (Law of Cosines)

$$
a^{2}=b^{2}+c^{2}-2 b c \cos (\alpha)
$$

$$
b c \cos (\alpha)=-1 / 2\left(a^{2}-b^{2}-c^{2}\right)
$$

$$
\mathrm{b} \cdot \mathrm{c}=-1 / 2\left(\mathrm{a}^{2}-\mathrm{b}^{2}-\mathrm{c}^{2}\right)
$$

Warren Torgerson in 1958

Eigen Decomposition of Gram Matrix (Similarity Matrix)

$$
\mathrm{G}=\left[\begin{array}{llll}
\mathrm{g}_{11} & \mathrm{~g}_{12} & \ldots & \mathrm{~g}_{1 \mathrm{n}} \\
\mathrm{~g}_{21} & \mathrm{~g}_{22} & \ldots & \mathrm{~g}_{2 \mathrm{n}} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\mathrm{~g}_{\mathrm{n} 1} & \mathrm{~g}_{\mathrm{n} 2} & \ldots & \mathrm{~g}_{\mathrm{nn}}
\end{array}\right] \quad \begin{aligned}
& \mathrm{g}_{\mathrm{ij}} \text { is dot product between element } \mathrm{i} \text { and } \mathrm{j} \\
& \text { which captures similarity or relatedness }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{G}=\mathrm{U} \Lambda \mathrm{U}^{\mathrm{T}} \\
& \mathrm{Z}=\mathrm{U} \Lambda^{1 / 2}
\end{aligned}
$$

G: Gram matrix or kernel matrix
U: Eigen vector
Λ : Eigen value
Z: principal component

Nonlinear Dimension Reduction of Swiss Roll Dataset

Swiss roll manifold in 3D $\xrightarrow{\text { unfolding }} 2 \mathrm{D}$ sheet
\leadsto Euclidean distance \longmapsto Geodesic distance

3-dimension

2-dimension

Algorithm of Isomap

d_{ij} through k is the shortest path.

$$
\begin{gathered}
E=\left\|\tau\left(D_{G}\right)-\tau\left(D_{Y}\right)\right\|_{L^{2}} \\
\tau(\mathrm{D})=-1 / 2(\mathrm{HDH}) \\
\\
\mathrm{H}=\mathrm{I}-1 / \mathrm{n}\left(\mathrm{ee}^{\mathrm{T}}\right)
\end{gathered}
$$

E: cost function
D_{G} : distance matrix in high dim
D_{Y} : distance matrix in low dim
τ : transform D to Gram matrix
H : centering matrix
I: identity matrix
e: vector of 1

TSNE Versus PCA of the Same MNIST Dataset sample size $\mathbf{n}=\mathbf{6 0 0 0}$

PCA

TSNE vs. PCA of a Single Cell RNAseq Data

cell number n $\sim \mathbf{6 0 0 0}$
Clusters were identified before TSNE and PCA analysis

0
1
2
3
4
5
6
7
10
11
12
13

Cells in cluster are more spread out.
Variance of PC is driven by outliers.

TSNE vs. PCA of TCGA Breast Cancer Data

sample size $\mathbf{n = 9 7 7}$

TSNE

PCA

digit
Basal
Her2
LumA
LumB
Normal

Isomap vs. TSNE

Isomap

Isomap vs. TSNE

Isomap

D: distance matrix
G: Gram matrix
$\mathrm{D} \longrightarrow \mathrm{G}$

TSNE

Euclidean Distance vs Mahalanobis Distance

Euclidean distance: $\mathrm{P}_{1}<\mathrm{P}_{3}<\mathrm{P}_{2}$
Probability: $\mathrm{p}_{1}=\mathrm{p}_{2}>\mathrm{p}_{3}$
Mahalanobis distance is a statistical distance related to probability
Prasanta Chandra Mahalanobis in 1936

Multivariate Gaussian Distribution

Σ : covariance matrix
Σ^{-1} : inverse of Σ
Λ : Diagonal matrix with Eigen values
W: Eigen vectors
Z: Principal Components
Z_{s} : Standardized Z
z: a sample from Z_{s}
T: Transposition
μ : mean vector

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{XW} \\
\mathrm{Z}_{\mathrm{s}} & =\mathrm{XW} \Lambda^{-1 / 2} \\
\mathrm{Z} & =\Lambda^{-1 / 2} \mathrm{~W}^{\mathrm{T}} \mathrm{X} \\
\mathrm{Z}^{\mathrm{T}} \mathrm{Z} & =\mathrm{X}^{\mathrm{T}} \mathrm{~W} \Lambda^{-1 / 2} \Lambda^{-1 / 2} \mathrm{~W}^{\mathrm{T}} \mathrm{X} \\
\mathrm{Z}^{\mathrm{T}} \mathrm{Z} & =\mathrm{X}^{\mathrm{T}} \Sigma^{-1} \mathrm{X}
\end{aligned}
$$

Multivariate Gaussian Distribution

T-distributed Stochastic Neighbor Embedding (TSNE)

$$
\begin{aligned}
& \mathrm{G}=\mathrm{U} \Lambda \mathrm{U}^{\mathrm{T}} \\
& \mathrm{Z}=\mathrm{U} \Lambda^{1 / 2}
\end{aligned}
$$

$$
C=K L(P \| Q)=\sum_{i} \sum_{j} p_{i j} \log \frac{p_{i j}}{q_{i j}} .
$$

T-distributed Stochastic Neighbor Embedding (TSNE)

$$
\begin{aligned}
& \text { High dimension } \\
& p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)} \\
& p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 n} \\
& \text { Gaussian.kernel } \\
& \text { Low dimension } \\
& q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}} . \\
& 0.4-2 \\
& C=K L(P \| Q)=\sum_{i} \sum_{i} p_{i j} \log \frac{p_{i j}}{q_{i j}} . \\
& \frac{\delta C}{\delta y_{i}}=4 \sum_{j}\left(p_{i j}-q_{i j}\right)\left(y_{i}-y_{j}\right)\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}
\end{aligned}
$$

TSNE vs. PCA of a Single Cell RNAseq Data

cell number n $\sim \mathbf{6 0 0 0}$
Clusters were identified before TSNE and PCA analysis

0
1
2
3
4
5
6
7
10
11
12
13

Cells in cluster are more spread out.
Variance of PC is driven by outliers.

Road Map for Dimension Reduction Methods

Uniform Manifold Approximation and Projection (UMAP)

TSNE is pretty good.
Why do we need UMAP?

	TSNE	UMAP
speed	moderate	fast
Structure preserved	local and global	local and global
Number of components	2	2 or more

Leland McInnes, John Healy, and James Melville arXiv 2018

TSNE Versus UMAP of the MNIST Dataset
 sample size $\mathbf{n}=\mathbf{6 0 0 0}$

TSNE

UMAP

TSNE Versus UMAP of the Same MNIST Dataset sample size $\mathbf{n}=400$

TSNE

UMAP

digit

- 0
- 1
- 2
- 3
- 4
- 5

6
7
7
8

TSNE Versus UMAP of the Same MNIST Dataset sample size $\mathbf{n}=400$ and digits of 0,1 , and 2
 TSNE
 UMAP

digit

TSNE vs. UMAP of a Same Single Cell RNAseq Data cell number $\mathbf{n} \mathbf{\sim} \mathbf{6 0 0 0}$

Clusters were identified before TSNE and UMAP analysis

TSNE

UMAP

TSNE vs. UMAP of TCGA Breast Cancer Data

sample size $\mathbf{n}=977$

digit
Basal
Her2
LumA LumB Normal

Comparison of PCA, TSNE, and UMAP

	Data type	Sample size	complexity	Performance
MNIST	image	6000	High	UMAP $>$ TSNE $>$ PCA
ScRNAseq	ScRNAseq	~ 6000	High?	UMAP \sim TSNE $>$ PCA
TCGA	Bulk RNAseq	~ 1000	moderate	UMAP \sim TSNE \sim PCA

TSNE vs. UMAP

TSNE vs. UMAP

$p(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)$

$$
\begin{aligned}
& w\left(\left(x_{i}, x_{i_{j}}\right)\right)=\exp \left(\frac{-\max \left(0, d\left(x_{i}, x_{i_{j}}\right)-\rho_{i}\right)}{\sigma_{i}}\right) \\
& B=A+A^{\top}-A \circ A^{\top} \\
& \sum_{j=1}^{k} \exp \left(\frac{-\max \left(0, d\left(x_{i}, x_{i_{j}}\right)-\rho_{i}\right)}{\sigma_{i}}\right)=\log _{2}(k)
\end{aligned}
$$

ρ_{i} : shortest distance of x_{i} neighbors

Uniform Manifold Approximation and Projection (UMAP)

$$
\begin{gathered}
\text { Weight.function } \\
w\left(\left(x_{i}, x_{i_{j}}\right)\right)=\exp \left(\frac{-\max \left(0, d\left(x_{i}, x_{i_{j}}\right)-\rho_{i}\right)}{\sigma_{i}}\right) \quad \text { Low-dimension } \\
B=A+A^{\top}-A \circ A^{\top} \\
\text { Cross.entropy }
\end{gathered}
$$

TSNE cost function
UMAP cost function

$$
C=K L(P \| Q)=\sum_{i} \sum_{j} p_{i j} \log \frac{p_{i j}}{q_{i j}} . \quad C((A, \mu),(A, \nu))=\sum_{a \in A} \mu(a) \log \left(\frac{\mu(a)}{\nu(a)}\right)+(1-\mu(a)) \log \left(\frac{1-\mu(a)}{1-\nu(a)}\right)
$$

Road Map for Dimension Reduction Methods

