

Dimension Reduction Methods: From PCA to TSNE and UMAP

Maxwell Lee

High-dimension Data Analysis Group Laboratory of Cancer Biology and Genetics Center for Cancer Research National Cancer Institute

May 7, 2020

Road Map for Dimension Reduction Methods

The Dot Product of Two Vectors is the Difference Between the Squared Distances (Law of Cosines)

$$a^{2} = b^{2} + c^{2} - 2bc \cos(\alpha)$$

oc cos(\alpha) = -1/2(a^{2} - b^{2} - c^{2})
b • c = -1/2(a^{2} - b^{2} - c^{2})

Warren Torgerson in 1958

Eigen Decomposition of Gram Matrix (Similarity Matrix)

$$G = \begin{bmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & g_{2n} \\ \vdots & & & \vdots \\ \vdots & & & & \vdots \\ g_{n1} & g_{n2} & \cdots & g_{nn} \end{bmatrix}$$

 g_{ij} is dot product between element i and j which captures similarity or relatedness

$$G = U\Lambda U^{T}$$
$$Z = U\Lambda^{1/2}$$

G: Gram matrix or kernel matrixU: Eigen vectorΛ: Eigen valueZ: principal component

Nonlinear Dimension Reduction of Swiss Roll Dataset

3-dimension

2-dimension

Joshua Tenenbaum et al Science 2000

e: vector of 1

TSNE Versus PCA of the Same MNIST Dataset sample size n=6000 TSNE PCA

Laurens van der Maaten and Geoffrey Hinton, JMLR 2008

TSNE vs. PCA of a Single Cell RNAseq Data

cell number n~6000 Clusters were identified before TSNE and PCA analysis

TSNE

PCA

Cells in cluster are more spread out.

Variance of PC is driven by outliers.

TSNE vs. PCA of TCGA Breast Cancer Data

sample size n=977

TSNE

PCA

Euclidean Distance vs Mahalanobis Distance

Euclidean distance: $P_1 < P_3 < P_2$ Probability: $p_1 = p_2 > p_3$

Mahalanobis distance is a statistical distance related to probability

Prasanta Chandra Mahalanobis in 1936

Multivariate Gaussian Distribution

 $p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$

$$\begin{split} \Sigma: & \text{covariance matrix} \\ \Sigma^{-1}: & \text{inverse of } \Sigma \\ \Lambda: & \text{Diagonal matrix with Eigen values} \\ W: & \text{Eigen vectors} \\ Z: & \text{Principal Components} \\ Z_{s}: & \text{Standardized } Z \\ z: & a \text{ sample from } Z_{s} \\ T: & \text{Transposition} \\ \mu: & \text{mean vector} \end{split}$$

Z = XW $Z_s = XW\Lambda^{-1/2}$ $z = \Lambda^{-1/2}W^Tx$ $z^Tz = x^TW\Lambda^{-1/2}\Lambda^{-1/2}W^Tx$ $z^Tz = x^T\Sigma^{-1}x$

Multivariate Gaussian Distribution

T-distributed Stochastic Neighbor Embedding (TSNE)

T-distributed Stochastic Neighbor Embedding (TSNE)

TSNE vs. PCA of a Single Cell RNAseq Data

cell number n~6000 Clusters were identified before TSNE and PCA analysis

TSNE

PCA

Cells in cluster are more spread out.

Variance of PC is driven by outliers.

Road Map for Dimension Reduction Methods

Uniform Manifold Approximation and Projection (UMAP)

TSNE is pretty good.

Why do we need UMAP?

	TSNE	UMAP
speed	moderate	fast
Structure preserved	local and global	local and global
Number of components	2	2 or more

Leland McInnes, John Healy, and James Melville arXiv 2018

TSNE Versus UMAP of the MNIST Dataset

sample size n=6000

TSNE

UMAP

TSNE Versus UMAP of the Same MNIST Dataset

sample size n=400

TSNE

UMAP

TSNE Versus UMAP of the Same MNIST Dataset sample size n=400 and digits of 0, 1, and 2 TSNE UMAP

TSNE vs. UMAP of a Same Single Cell RNAseq Data cell number n~6000 Clusters were identified before TSNE and UMAP analysis

TSNE

UMAP

TSNE vs. UMAP of TCGA Breast Cancer Data

sample size n=977

Comparison of PCA, TSNE, and UMAP

	Data type	Sample size	complexity	Performance
MNIST	image	6000	High	UMAP > TSNE > PCA
ScRNAseq	ScRNAseq	~6000	High?	UMAP ~ TSNE > PCA
TCGA	Bulk RNAseq	~1000	moderate	$UMAP \sim TSNE \sim PCA$

TSNE vs. UMAP

TSNE vs. UMAP

 ρ_i : shortest distance of x_i neighbors

Uniform Manifold Approximation and Projection (UMAP)

TSNE cost function

UMAP cost function

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}. \qquad C((A,\mu), (A,\nu)) = \sum_{a \in A} \mu(a) \log \left(\frac{\mu(a)}{\nu(a)}\right) + (1-\mu(a)) \log \left(\frac{1-\mu(a)}{1-\nu(a)}\right)$$

Road Map for Dimension Reduction Methods