

Statistical analysis: concept, practice and interpretation

Maxwell Lee

High-dimension Data Analysis Group
Laboratory of Cancer Biology and Genetics
Center for Cancer Research
National Cancer Institute

April 27, 2018

Outline of the talk

- 1) **Differential gene expression between two groups** t-test, ANOVA, and linear modeling
- 2) Association between two variables correlation, linear regression, and geometric representation
- 3) Relationship between samples hierarchical clustering and PCA

How do we know if the difference is statistically significant?

We use t-test to evaluate the difference between two groups

$$t = \frac{(x_1 - x_2)}{\sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}}$$

We use t-test to evaluate the difference between two groups

Analysis of variance (ANOVA)

$$SS_{total} = SS_{between} + SS_{within}$$

$SS_{total} = \sum_{j=1}^{r} \sum_{i=1}^{r} (x_{ij} - \overline{x})^2$
$SS_{between} = \sum_{j=1}^{p} n_j (\overline{x}_j - \overline{x})^2$
$SS_{within} = \sum_{j=1}^{p} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_j)^2$

Summary ANOVA

Source	Sum of Squares	Degrees of Freedom	Variance Estimate (Mean Square)	F Ratio
Between	SS _B	K-1	$MS_{B} = \frac{SS_{B}}{K - 1}$	$\frac{MS_B}{MS_W}$
Within	SS _W	N-K	$MS_W = \frac{SS_W}{N - K}$	
Total	$SS_T = SS_B + SS_W$	N-1		

Conclusion of the part I

- 1) t statistic = $(X_1 X_2)$ / stand error
- 2) t statistic provides an objective way for evaluating the statistical significance of the difference between the two groups.
- 3) F statistic from ANOVA can also be used to determine the statistical significance.

Outline of the talk

- 1) Differential gene expression between two groups t-test, ANOVA, and linear modeling
- 2) **Association between two variables** correlation, linear regression, and geometric representation
- 3) Relationship between samples hierarchical clustering and PCA

Correlation between variables

TCGA BRCA 20 samples each subtype

Be aware of different correlations across multiple levels

TCGA BRCA 20 samples each subtype

Correlation is sensitive to data scale: impact of log transformation

Correlation is sensitive to data scale: impact of log transformation

correlation using log10 transformation of tag reads

Simple linear regression model

$$Y = \beta_0 + \beta_1 X + e$$

Least squares solution

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

The least squares approach chooses β_0 and β_1 to minimize the RSS.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \quad \beta_1 = r \, S_y / S_x$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Linear regression is sensitive to data at multiple levels

Estimate Std. Error t value Pr(>|t|) 9.747e-01 1.279e-01 7.623e+00 3.587e-09

subtype Estimate Std. Error t value Pr(>|t|)
Basal 0.40173 0.39035 1.0291 0.317
LumA 0.01045 0.09211 0.1134 0.911

Linear model: linear regression and ANOVA

$$Y = \beta_0 + \beta_1 X + e$$

\mathbf{Y}	\mathbf{X}	Type
continuous variable	continuous variable	linear regression
continuous variable	categorical variable	ANOVA

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + e$$

Y	X	Type
continuous variable	X_1 is continuous X_2 is categorical	ANCOVA

lm(ESR1 ~ PGR * subtype)

Multiple linear regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_p x_p + \epsilon$$

$$y = X\beta + \epsilon$$

$$RSS = (y - X\beta)^T (y - X\beta)$$

$$\beta = (X^T X)^{-1} X^T y$$

Multiple linear regression model: traditional representation

Multiple linear regression model: geometric representation

$$R^{2} = 1 - (RSS/SST)$$

$$R = cos(\alpha)$$

Multiple linear regression model: geometric representation

$$R^2 = r_{y1}^2 + r_{y(2.1)}^2$$

$$r_{y(2.1)} = \beta_2 \sin(\theta)$$

Generalized linear model: linear regression and classification

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_p x_p + \varepsilon$$

Linear Regression and ANOVA

\mathbf{Y}	\mathbf{X}	Type
continuous variable	continuous variable	linear regression
continuous variable	categorical variable	ANOVA

Classification

\mathbf{Y}	X	Type
categorical variable	continuous or categorical	classification

Conclusion of the part II

- 1) We can use correlation to evaluate association between two variables. The correlation is sensitive to data consisting of heterogeneous groups and data transformation.
- 2) We can also use regression model to evaluate association between two variables. Similarly, regression analysis is sensitive to data scale and transformation.
- 3) The linear model is a powerful approach. It can be used for regression, ANOVA, and classification.
- 4) Geometric representation can provide insights into the understanding of linear regression analysis.

Outline of the talk

- 1) Differential gene expression between two groups t-test, ANOVA, and linear modeling
- 2) Association between two variables correlation, linear regression, and geometric representation
- 3) Relationship between samples hierarchical clustering and PCA

Supervised and unsupervised statistical learning

Hierarchical clustering analysis

Hierarchical clustering analysis of TCGA samples

TCGA BRCA 30 samples each subtype

Principal component analysis (PCA)

Principal component analysis (PCA)

Algorithm of PCA

$$z_1 = Xu_1$$

$$z_2 = Xu_2$$

$$z_3 = Xu_3$$

$$Z = XU$$

$$var(Z) = (XU)^T XU$$

$$var(Z) = U^T X^T X U = U^T R U$$

Choose U to maximize U^TRU subject to $U^TU = I$

$$RU = \lambda U$$

U is the eigenvector and λ is eigenvalue

PCA analysis of TCGA samples

Conclusion of the part III

- 1) We can use hierarchical clustering to evaluate relationship among samples.
- 2) PCA involves the rotation of the coordinates so that PC1 captures the direction where samples have the largest variance, followed by PC2, PC3, and so on.
- 3) Each PC is a linear combination of the original variables. Ideally, the first a few PC components should capture most of the variance in the samples.