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Outline of the talk

1) Differential gene expression between two groups
t-test, ANOVA, and linear modeling

2) Association between two variables
correlation, linear regression, and geometric representation

3) Relationship between samples
hierarchical clustering and PCA



How do we know if the difference is statistically significant?



We use t-test to evaluate the difference between two groups



We use t-test to evaluate the difference between two groups



Analysis of variance (ANOVA)

SStotal = SSbetween + SSwithin



Conclusion of the part I

1) t statistic = (X1 – X2) / stand error

2) t statistic provides an objective way for evaluating the 
statistical significance of the difference between the two 
groups.

3) F statistic from ANOVA can also be used to determine the 
statistical significance.



Outline of the talk

1) Differential gene expression between two groups
t-test, ANOVA, and linear modeling

2) Association between two variables
correlation, linear regression, and geometric representation

3) Relationship between samples
hierarchical clustering and PCA



Correlation between variables



Be aware of different correlations across multiple levels 



Correlation is sensitive to data scale: impact of log transformation 



Correlation is sensitive to data scale: impact of log transformation 



Y = β0 + β1X + e
Simple linear regression model



Least squares solution

The least squares approach chooses β0 and β1 to minimize the RSS.

RSS = e1
2 + e2

2 + … + en
2

β1 = r Sy/Sx



Linear regression is sensitive to data at multiple levels 



Linear model: linear regression and ANOVA

Y = β0 + β1X + e

Y X Type
continuous variable continuous variable linear regression
continuous variable categorical variable ANOVA

Y = β0 + β1X1 + β2X2 + e

Y X Type
continuous variable X1 is continuous

X2 is categorical 
ANCOVA

lm(ESR1 ~ PGR * subtype)



Multiple linear regression model

y1 x11 x12 …  x1p
y2 x21 x22 …  x2p
.               .
.       .
yn xn1 xn2 …  xnp

y = β0 + β1x1 + β2x2 … + βpxp + ε

y = Xβ + ε

β = (XTX)-1 XTy

RSS = (y - Xβ)T(y - Xβ)



Multiple linear regression model: 
traditional representation

y = β0 + β1x1 + β2x2 + ε

RSS = Σ (yi – yi)2
i = 1

n



Multiple linear regression model: 
geometric representation

x1

x2

y

y

ε

α

R2 = 1 – (RSS/SST)
R  = cos(α) 

β1

β2
y = β1x1 + β2x2



Multiple linear regression model: 
geometric representation

x1

x2

β1

β2
y

R2 = r2
y1 + r2

y(2.1)

ry(2.1) = β2 sin(θ) 

θ

y = β1x1 + β2x2

ry1

ry(2.1)



Generalized linear model: linear regression and classification

Y X Type
continuous variable continuous variable linear regression
continuous variable categorical variable ANOVA

Y X Type
categorical variable continuous or 

categorical
classification

y = β0 + β1x1 + β2x2 … + βpxp + ε

Linear Regression and ANOVA

Classification



Conclusion of the part II

1) We can use correlation to evaluate association between two 
variables.  The correlation is sensitive to data consisting of 
heterogeneous groups and data transformation.

2) We can also use regression model to evaluate association 
between two variables. Similarly, regression analysis is 
sensitive to data scale and transformation.

3) The linear model is a powerful approach.  It can be used for 
regression, ANOVA, and classification.

4) Geometric representation can provide insights into the 
understanding of linear regression analysis.
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Supervised and unsupervised statistical learning

supervised

unsupervised

Regression model
linear regression, polynomial 
regression, glm

Classification
glm, LDA, KNN

Clustering analysis
hierarchical clustering, k-means

Dimension reduction
PCA, MDS, t-SNE

continuous variable

categorical variable



Hierarchical clustering analysis



Hierarchical clustering analysis of TCGA samples



Principal component analysis (PCA)



Principal component analysis (PCA)



Algorithm of PCA

z1 = Xu1

z2 = Xu2

z3 = Xu3

Z = XU

var(Z) = (XU)TXU 

var(Z) = UTXTXU = UTRU

Choose U to maximize UTRU
subject to UTU = I 

RU = λU
U is the eigenvector and λ is eigenvalue



PCA analysis of TCGA samples



Conclusion of the part III

1) We can use hierarchical clustering to evaluate relationship 
among samples.  

2) PCA involves the rotation of the coordinates so that PC1 
captures the direction where samples have the largest variance, 
followed by PC2, PC3, and so on.

3) Each PC is a linear combination of the original variables.  
Ideally, the first a few PC components should capture most of 
the variance in the samples.
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