SSSC Brown Bag Lunch Seminar

Schedule: ccrod.cancer.gov/confluence/display/CCRSSSCArchive/Home

Understanding Tumor Heterogeneity and Plasticity Through the Lens of Cancer Stem Cell Model and Mathematical Modeling Cancer Stem Cell Model and Evolutionary Dynamics

Maxwell Lee

High-dimension Data Analysis Group Laboratory of Cancer Biology and Genetics Center for Cancer Research National Cancer Institute

April 12, 2021

Understanding Biology with Mathematical Modeling

Heterogeneity of Mouse Mammary Tumors

Keratins 8/18 Keratin 5 Herschkowitz, ..., Perou Genome Biology 2007

Mammary Stem Cell Model

Carcinogenesis Models

Cancer Evolution Model

Cancer Stem Cell Model

Gupta et al Cell 2011 Aug 19;146(4):633-44

Cancer Stem Cell Dynamics Hoechst 33342 CD133 Merge **a** (0h) **b** (12h) (i)) 🕂 🔿

SW620 human colon cells

Wang et al. PLoS One 2014 Jan 9;9(1):e84654

Cancer Stem Cell Dynamics

Cancer Stem Cell Dynamics

Understanding Biology with Mathematical Modeling

Evolutionary Dynamics

Ordinary Differential Equation (ODE) for **exponential growth**

Evolutionary Dynamics

Ordinary Differential Equation (ODE) for exponential growth of three cell types

x_i: frequency of cell type i

Evolutionary Dynamics

 $\dot{x_i} = x_i [f_i(\mathbf{x}) - \phi]$

 x_i : frequency of species i $f_i(x)$: fitness of species i ϕ : average fitness

 x_i increases if $f_i(x) > \phi$ Darwinian selection: survival of the fittest

Markov Process for Cancer Stem Model

$$P = egin{bmatrix} p_{11} & p_{12} & \ldots & p_{1n} \ p_{21} & p_{22} & \ldots & p_{2n} \ & \ddots & \ddots & & \ p_{n1} & p_{n2} & \ldots & p_{nn} \end{bmatrix}$$

transition probability matrix $p_{ij} \ge 0$ $\Sigma_j p_{ij} = 1$

R package markovchain

Markov Process for Cancer Stem Model

-

$$\begin{array}{c} x_{0} \longrightarrow x_{1} \longrightarrow x_{r_{1}} \longrightarrow x_{r} \longrightarrow x_{r_{r_{1}}} \longrightarrow \cdots P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \\ x^{t+1} = x^{t}P_{nn} \qquad \begin{array}{c} \text{Assuming fitness is} \\ \text{the same for all } x_{i} \\ x^{t}P_{n1} = x_{1}p_{11} + x_{2}p_{21} + \dots + x_{n}p_{n1} = x_{1}^{t+1} \\ x^{t}P_{n2} = x_{1}p_{12} + x_{2}p_{22} + \dots + x_{n}p_{n2} = x_{2}^{t+1} \\ x^{t}P_{nn} = x_{1}p_{1n} + x_{2}p_{2n} + \dots + x_{n}p_{nn} = x_{n}^{t+1} \\ x^{*} = x^{*}P \qquad \text{at steady state} \\ x^{*} \text{ is the left eigen vector of matrix P} \\ \text{Its eigen value is 1, which is the largest eigen value} \end{array}$$

Markov Model of Dynamical System

- Stem cells and non-stem cells
- Epithelial-to-mesenchymal transition (EMT)
- Epigenetic states
- Gene expression and isoforms
- Protein expression and post-translational modifications

Cancer Stem Cell Model

Gupta et al Cell 2011 Aug 19;146(4):633-44

Conversion Between Cancer Stem Cell and Non-stem Cells

Gupta et al Cell 2011 Aug 19;146(4):633-44

Subtypes Have Similar Growth Rate

Conversion Between Cancer Stem Cell and Non-stem Cells

$$\mathbf{X}^{0} = \begin{pmatrix} \mathbf{S} & \mathbf{B} & \mathbf{L} \\ 1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 \end{pmatrix}$$

growth rates are the same P is fixed

 $X^t = X^0 P^{\wedge t}$

transition probability matrix

Different Kinetics of Markov Model

Different Cellular Distribution of Basal and Luminal Cell Types

Cellular State Distribution Affected by Chemotherapy Treatment

 $x^* = x^*DP$

D is diagonal matrix of drug resistance x* is the left eigen vector of matrix product of DP with the largest eigen value

Understanding Biology with Mathematical Modeling

