

## **Dimension Reduction Methods:** From PCA To TSNE And UMAP

Maxwell Lee

High-dimension Data Analysis Group Laboratory of Cancer Biology and Genetics Center for Cancer Research National Cancer Institute

April 16, 2020



# **Outline Of The Talk**

### 1) **Linear dimension reduction methods** PCA, MDS, and SVD

- 2) **Nonlinear dimension reduction methods** Isomap, LLE, Laplacian Eigenmap, TSNE, and UMAP
- 3) **Canonical correlation and Trajectory analysis** Data integration and reversed graph embedding

## Data Matrix (Table)

$$X_{np}$$
 n observations and p variables

#### **Multivariate Linear Regression Model**

y is response variable or dependent variable

 $x_1...x_p$  are independent variables

$$\left[ \begin{array}{cccccccccc} y_1 & x_{11} & x_{12} & \dots & x_{1p} \\ y_2 & x_{21} & x_{22} & \dots & x_{2p} \\ \cdot & & & & \cdot \\ \cdot & & & & \cdot \\ y_n & x_{n1} & x_{n2} & \dots & x_{np} \end{array} \right]$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_p x_p + \epsilon$$
$$y = X\beta + \epsilon$$

## **Application Of Simple Linear Regression Model**

 $y=\beta_0+\beta_1x+\epsilon$ 

| у                  | Х                    | application          |  |  |
|--------------------|----------------------|----------------------|--|--|
| Tumor size         | Gene expression      | correlation          |  |  |
| Gene expression    | Treatment vs control | t-test               |  |  |
| Treatment response | Gene expression      | Classification (glm) |  |  |

## **Unsupervised Analysis**

$$\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

- We do not have data for response variable y or sample label
- We are more interested in intrinsic relationship among samples

## **Supervised And Unsupervised Statistical Learning**







#### Karl Pearson 1901; Harold Hotelling 1933-1936





#### **Geometric View Of PCA: Rotation Of Coordinates**



#### **PCA: Samples With Two Groups**





#### **PCA: Samples With Three Groups**



 $\begin{array}{l} group1 \\ \mu_1 = (0,\,0,\,0,\,0) \\ \mu_2 = (0,\,0,\,0,\,0) \end{array}$ 

group2  $\mu_1 = (0, 3, 6, 20)$  $\mu_2 = (0, 0, 0, 0)$ 

group3  $\mu_1 = (0, 0, 0, 0)$  $\mu_2 = (0, 3, 6, 20)$ 



#### **PCA: Samples With Three Groups**



group2  $\mu_1 = (6, 20)$  $\mu_2 = (0, 0)$ 

group3  $\mu_1 = (0, 0)$  $\mu_2 = (6, 20)$ 



## Variance Accounted For By PC1



# PCA Analysis Of TCGA Breast Cancer Data

TCGA BRCA samples



#### **Algorithm of PCA**

$$z_1 = Xw_1$$
$$z_2 = Xw_2$$
$$z_3 = Xw_3$$

Z = XW

 $var(Z) = (XW)^T XW$  $var(Z) = W^T X^T XW = W^T SW$ 

Choose w to maximize  $w^T S w$ subject to  $W^T W = I$ 

#### **Algorithm of PCA**

Choose w to maximize  $w^T S w$ subject to  $W^T W = I$ 

$$L(w, \lambda) = w^{T}Sw - \lambda(w^{T}w - 1)$$

$$\frac{\partial L}{\partial \mathbf{w}} = 2\mathbf{S}\mathbf{w} - 2\lambda\mathbf{w}$$

$$Sw = \lambda w$$
  
w is the eigenvector and  $\lambda$  is eigenvalue

## **Properties Of Eigen Values And Eigen Vectors**

#### **Covariance matrix S**

- There are p pairs of Eigen values and Eigen vectors
- Eigen values are ranked from the largest to smallest
- For covariance matrix, all eigen values are nonnegative

## Variance of PCs Are Eigen Value And Are Additive

$$var(z) = w^{T}Sw$$
$$= w^{T}\lambda w$$
$$= \lambda$$
$$var(Z) = \lambda_{1} + \lambda_{2} \Box + \lambda_{p}$$



## **Singular Value Decomposition (SVD)**

$$Z = XW$$
$$Z_s = XWD^{-1/2}$$
$$Z_sD^{1/2}W^T = X$$

$$\mathbf{X} = \mathbf{Z}_{\mathrm{s}} \mathbf{D}^{1/2} \mathbf{W}^{\mathrm{T}}$$

 $X = U\Sigma V^{T}$ 

#### **Right and Left Eigen Vectors Of SVD**

 $X = U\Sigma V^{T}$  $X^{T}X = V\Sigma U^{T}U\Sigma V^{T}$  $= V\Sigma^{2}V^{T}$ 

 $\begin{aligned} XX^{T} &= U\Sigma V^{T} V\Sigma U^{T} \\ &= U\Sigma^{2} U^{T} \end{aligned}$ 



Pairwise Distance Matrix

|        | Athens | Berlin | Dublin | London | Madrid | Paris | Rome | Warsaw |
|--------|--------|--------|--------|--------|--------|-------|------|--------|
| Athens | 0      | 1119   | 1777   | 1486   | 1475   | 1303  | 646  | 1013   |
| Berlin | 1119   | 0      | 817    | 577    | 1159   | 545   | 736  | 327    |
| Dublin | 1777   | 817    | 0      | 291    | 906    | 489   | 1182 | 1135   |
| London | 1486   | 577    | 291    | 0      | 783    | 213   | 897  | 904    |
| Madrid | 1475   | 1159   | 906    | 783    | 0      | 652   | 856  | 1483   |
| Paris  | 1303   | 545    | 489    | 213    | 652    | 0     | 694  | 859    |
| Rome   | 646    | 736    | 1182   | 897    | 856    | 694   | 0    | 839    |
| Warsaw | 1013   | 327    | 1135   | 904    | 1483   | 859   | 839  | 0      |

#### Law of cosine

 $a^2 = b^2 + c^2 - 2bc \cos(\alpha)$ 



2bc  $cos(\alpha) = b^2 + c^2 - a^2$ bc  $cos(\alpha) = -\frac{1}{2}(a^2 - b^2 + c^2)$ 

**b**•**c** = bc cos(
$$\alpha$$
)  
**b**•**c** = -1/2(a<sup>2</sup> - b<sup>2</sup> - c<sup>2</sup>)

$$b \cdot c = -1/2(a^2 - b^2 - c^2)$$

$$\mathbf{K} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$$

$$Z = U\Lambda^{1/2}$$

## **MDS And PCA Are Equivalent**

$$Z = U\Lambda^{1/2}$$
$$X = U\Sigma V^{T}$$
$$X^{T}X = V\Sigma^{2}V^{T}$$
$$XX^{T} = U\Sigma^{2}U^{T}$$

 $\begin{aligned} XV &= U\Sigma \\ Z &= U\Lambda^{1/2} \end{aligned}$ 







# **Outline Of The Talk**

# 1) Linear dimension reduction methods PCA, MDS, and SVD

- 2) **Nonlinear dimension reduction methods** Isomap, LLE, Laplacian Eigenmap, TSNE, and UMAP
- 3) **Canonical correlation and Trajectory analysis** Data integration and reversed graph embedding