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Relevance of mouse models to human diseases depends
on the “driving factors” in common

isease« Disease
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Irrelevance resulted from mismatch between model
sefting and human disease
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Disease tracking and treatment in the preclinical models
need to match those in clinical situations
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Disease tracking and treatment in the preclinical models
need to match those in clinical situations

Therapeutic setting
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Different therapeutic settings target different disease
states

Therapeutic Targets of the Goals
setting freatment

Intervention Detected disease  Eliminating the detected Surgical resection of
disease tumors
Adjuvant Residual disease Preventing metastatic Chemotherapy following
diseases tumor resection
Neoadjuvant Disseminating Preventing the Chemotherapy followed
disease dissemination of the disease by tumor resection

Maintenance Progressing disease Slowing the progression for  Palliative chemotherapy
symptom relief




Tumor models for studying adjuvant setting
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Quantitation

Pathological scoring

Adjuvant setting model should allow quantitative
tracking of metastatic disease
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Chest bioluminescence

Clinically relevant readout can be generated from
quantitative disease tracking in adjuvant setting model
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Models for neoadjuvant therapy should allow tracking
of disseminated disease

DMBA-induced HGF-tg;CDK4R24 melanoma
labeled with luciferase and GFP
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Disease tracking and treatment in the preclinical models
need to match those in clinical situations
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Effects of disease stage on therapeutic response

Estimated Proportion Event-free

0.80

0.604

0.404

0.204

0.00

Nonmetastatic disease, experimental therapy
Nonmetastatic disease, standard therapy
Metastatic disease, experimental therapy
Metastatic disease, standard therapy
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Grier et al. (2003) N Engl J Med

Ewing’s Sarcoma

Standard combination
chemotherapy:
Doxorubicin
Vincristine
Cyclophosphamide
Dactinomycin

Experimental therapy:
Combination chemotherapy
alternating with courses of
ifosfamide and etoposide

; 348:694-701.



Comparing therapeutic responses of diseases at distinct
progression stages
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Responses of primary and metastatic tumors to the same
chemotherapeutic agent are driven by different factors

Subcutaneous tumor
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Responses of primary and metastatic tumors to the same
chemotherapeutic agent are driven by different factors

Metastatic disease

Overall Survival (OS)
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Therapeutic responses in different settings may not be
associated with each other
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Disease tracking and treatment in the preclinical models
need to match those in clinical situations
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Different types of therapies require different modeling
endpoints
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Tumor response to immune checkpoint inhibitors is
associated with effector T cell levels and growth delay
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Implications

1. PFS and DFS are the surrogate endpoints for cytotoxic therapy
study. Metastatic models could be more relevant setting.

2. Growth delay is associated with levels of infiltrated effector T cells.
Subcutaneous models therefore can be used in immunotherapy
study.

3. Selection of models with similar therapeutic response in growth
kinetics and endpoints is critical for the clinical relevance of the
model.




NOT SURE IF HEISENBERG UNCERTAINTY PRINCIPLE
ISAPPLICABLE

“Observer Effect”

measurements of certain systems cannot be
made without affecting the system




Mouse:

Inconsistent growth and/or labeling maintenance
in a syngeneic tumor model
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Glowing head mice: GEM pre-tolerized with GFP
and luciferase
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Antigenicity of labeling markers can alter disease
progression
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Antigenicity of labeling markers confounded study
results by altering therapeutic response of the tumor
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Gene integration of “control” vector can cause
confounding effects
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Transduction with control lentivirus suppresses metastasis and alters
therapeutic response in the Mvt1l model
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Confounding effect from non-expressing gene
integration: Independent of immune response

1. Effect seen with multiple independent control
lentiviruses In multiple experiments.

2. Not an Immune response to the lentivirus: Effect
IS also seen In fully iImmunodeficient (NSG)
mouse hosts.

Lalage Wakefield (LCBG, NCI)




Relevance of Preclinical Models: Revisited

Technologies & Logistics
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