

 $R_{esponse} E_{valuation} In N_{eurofibromatosis} S_{chwannomatosis} \\ INTERNATIONAL COLLABORATION$

- If sharing any data or information from these slides generated by the REiNS International Collaboration, please acknowledge the authors, group chairs, and specific working group.
- If using any information presented with a citation, please reference the primary source.

Developing Endpoints for Skeletal Manifestations in NF1

Jonathan J Rios

Scottish Rite for Children

 $R_{esponse} E_{valuation} I_n N_{eurofibromatosis} S_{chwannomatosis} \\ INTERNATIONAL COLLABORATION$

Skeletal Manifestations in NF1

- Osteopenia
 - Systemic and localized
- Scoliosis
 - With and without paraspinal neurofibroma
- Dysplasia and pseudarthrosis

Systemic Osteopenia & DEXA Imaging

Reduced Lumbar Spine BMD in NF1

Lodish, et al. (2012); Brunetti-Pierri, et al. (2008)

Phase 2 Trial of Vitamin D

- Led by Dave Viskochil (U of Utah) and Betty Schorry (Cincinnati Children's)
- Young adults with Vitamin D insufficiency
 600 IU vs 4,000 IU (both +400mg Calcium)
- Bone density measured by DEXA
- 32 screened, 25 enrolled target enrollment is 320
 - No safety concerns
 - Efficacy not yet evaluated
- Recruitment has been challenging.

Localized osteopenia with PN

Patient with PN-associated bone loss

Sub-Troch. Femoral Diameter

Measuring skeletal impac

Potential for skeletal improvement with MEKi

Potential for DEXA/X-ray as secondary endpoints

100

of MEKi

1000

500

How do we measure localized bone density?

Paria, et al. (unpublished);Ma, et al. (accepted)

<u>Scoliosis</u>

Somatic NF1 mutations in scoliosis

Journal of Molecular Neuroscience (2019) 68:11-18 https://doi.org/10.1007/s12031-019-01277-0

Somatic mutation in bone leads to MEK-dependent hypomineralization

medicine

As fot as α improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1

Jean de la Croix Ndong^{1,2}, Alexander J Makowski^{1,3–5}, Sasidhar Uppuganti^{1,4}, Guillaume Vignaux^{1,2}, Koichiro Ono^{1,2,6}, Daniel S Perrien^{1,4,5,7}, Simon Joubert⁸, Serena R Baglio⁹, Donatella Granchi⁹, David A Stevenson¹⁰, Jonathan J Rios^{11–14}, Jeffry S Nyman^{1,3–5} & Florent Elefteriou^{1,2,15,16}

PN-associated scoliosis

Considerations

1. X-rays for secondary endpoints in ongoing/future trials!! 2. Can we evaluate scoliosis with existing MRIs

Margraf, et al. (2019); de la Crouix²Ndong, et al. (2014); Ma, et al. (accepted)

Tibial Dysplasia

- 3-5% of children with NF1
- 2/3 progress to fracture

No current clinically-meaningful measure:

- 1. Quality of bone
- 2. Degree of dysplasia

Need to develop clinical endpoint:

- 1. Evaluate correction following treatment
- 2. Predict fracture risk

Potential Outcome Measures

Peripheral quantitative computed tomography

3

Results comparing NF1 vs control

Tibial area Cortical thickness Periosteal circumference Cortical area Strength strain index

Need to study dysplastic bone!

Potential Outcome Measures

Quantitative bone ultrasound

 Contralateral
Dysplastic (no fracture)

Advantages

- 1. Non-invasive
- 2. No radiation
- 3. Contralateral control
- 4. Age- and gender-matched Z-scores

David Stevenson, Stanford

Pseudarthrosis After Fracture

Modified RUST Score for NF1

A radiographic scoring system to assess healing in congenital pseudarthrosis of the tibia

B. Stephens Richards, David Wilkes, Molly Dempsey and Pamela Nurenberg

Orthop B 24:118-122 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

Score per cortex ^a	Callus	Fracture line
1	Absent	Visible
2	Present	Visible
3	Present	Invisible

Radiographic criteria

RUST Score = Sum of scores for each of four cortices

RUST developed of the set of

Radiographic criteria

Score per cortex ^a	Callus	Fracture line	
1	Absent	Visible	Eccentric rod location precludes visualization of cortex
2	Present	Visible	
3	Present	Invisible	Faint lucencies present in dysplastic bone, not representative of fracture line

*Union can be defined as at least 2 cortices scoring 3

INFUSE Clinical Trial

Test the efficacy of rhBMP INFUSE graft (Medtronic) to improve healing of NF1 pseudarthrosis

- · Closed due to lack of enrollment
- REiNS recommendations:
 - Better engage orthopaedists in NF1 clinics
 - Engage focus groups for patient perspectives
 - Consider registry studies
 - Recognize PN-associated bone manifestations
 - Further develop skeletal endpoints
 - Promote basic-translational research
 - Establish skeletal biorepository

<u>Summary</u>

- There are several skeletal manifestations amenable to clinical trials
- Important to consider recruitment strategies and difficulties
- Potential exists to include skeletal endpoints in *future* trials
 - Secondary endpoints
- Potential to evaluate skeletal endpoints from *completed* trials
 - MRI for spine deformity

<u>Acknowledgements</u>

- David Stevenson MD, Stanford University
- Betty Schorry MD, Cincinnati Children's Hospital
- Noelle Larson MD, *Mayo Clinic*
- Eva Dombi MD, National Cancer Institute
- Andrea Gross MD, National Cancer Institute
- Brigitte Wideman MD, National Cancer Institute
- B Stephens Richards MD, Scottish Rite for Children

