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Definition of Leukodystrophies

hereditary

impair normal brain

affect brain myelin throughout life
commonly fatal

progressive: cognitive deterioration
neuropsychiatric difficulties (substance abuse
not uncommon)
pyramidal and cerebellar abnormalities
visual abnormalities

dementia and death within a few years




Hypomyelination (GM2) Inflammatory demyelination (CALD)

Spongiform Encephalopathy
(Canavan)




Approaches to gene therapy
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History of Gene Therapy

Basic AAV biology

Discovery of AAV
(1965-1966)

Cloning and sequencing of
AAV2 genome (1982-1983)

Early gene therapy application

First AAV vector for
gene delivery (1984)

First human retroviral cell
based application (1990)

Adapted from “Adeno-associated virus vector as a platform for gene therapy delivery” by D. Wang et al., 2019

First in vivo rAAV
application (1993)

First human rAAV
application (1995)

Explosion of clinical trials

Zolgensma
FDA approval
(2019)

Luxturna FDA
approval (2017)

Nusinersen FDA
approval (2016)

First EMA
approval
(2012)

First human neurodegenerative
disease treated (2009)

Clinical efficacy (2008)

First retroviral vector ex vivo
gene therapy trial (2002)




IN VIVO versus EX VIVO delivery for CNS
disease
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Center for Rare Neurological Diseases
addresses gaps
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Infantile Tay Sachs and Sandhoff Disease (GM?2)
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Rationale for thalamic AAV-GM2 delivery
(AAVrh8-HEXA and AAVrh8-HEXB)

Human thalamus is integrative hub for functional brain
networks; potential for lysosomal enzymes to achieve
cross correction of neighboring cells




Worldwide recruitment for AAV-GM?2
delivery to the brain and spinal cord
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X-linked Adrenoleukodystrophy (X-ALD)
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Allogeneic bone marrow transplant (BMT) to
treat a cerebral adrenoleukodystrophy (ALD)

/ BMT with donor cells dramatically \
improves survival
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Elivaldogene autotemcel (eli-cel) Gene Therapy:
2 Single-Arm Clinical Trials for Cerebral ALD

HSC collection Myeloablative conditioning eli-cel Transduced HSCs and progenitors engraft
Mobilization Bu/Cy (ALD-102) or infusion and differentiate into cerebral microglia
(G-CSF +/- plerixafor)” Bu/Flu (ALD-104)

expressing ALDP

& apheresis

= follow-up

v
1 Long-term
eli-cel centralized manufacturing follow-up study

(LTF-304)
* * -I-;.':;f‘ * 15 years total follow-up

Select Transduce with Lenti-D  Cryopreserve, test,
CD34+ cells lentiviral vector release eli-cel




Neuroimaging outcomes demonstrate halting of
cerebral ALD progression after Lenti-D treatment

Subject 2001: first patient treated Representative untreated
pre treatment 1 year after Lenti-D 2 years after Lenti-D patient

T1 Post

Loes score =2 Loes score=3 Loes score =2




Ex vivo gene therapy for X-ALD

Milestones:
First trials of single gene addition in cerebral ALD

Encouraging efficacy data (stabilization)
Reassuring safety profile (no engraftment issues / no GvHD) but MDS

Limitations:
Delays in engraftment “time = brain”
Adverse events consistent with myeloablation

HSCT X-ALD patients also develop AMN (Van Geel et al, 2015)
AMN requires broad delivery to the entire spinal cord/peripheral nerve

Cerebral ALD (CALD) }\3 ’ Y i Adrenomyeloneuropathy

(AMN)
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AAV to target neurodegeneration in the
spinal cord

Spinal Muscular Atrophy
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Spinal cord can be targeted by AAV9-mediated
gene delivery

Peroxisome Localization

Brain Spinal cord
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Intrathecal osmotic pump of AAV9 delivers
more GFP to the spinal cord than bone marrow
transplantation
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hABCD1 protein expression after intrathecal pump
delivery for mouse model of
adrenomyeloneuropathy (AMN)
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In Vivo Routes of Delivery to
Nervous System in MGH trials
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Canavan Disease (CD)

Canavan normal

* increasing head size

 notirritable

e poor head control, hypotonia

* nystagmus

 motor delay: unable to sit up
but some can reach for objects

autosomal recessive, mutations
in aspartoacylase gene leading to
N-acetylaspartate (NAA) accumulation




Intravenous AAV9-ASPA rescues mouse model of
Canavan disease
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Potential Toxicities

* |n vivo AAV-mediated gene therapy

e Exvivo lentiviral gene therapy




Toxicity of high dose AAV9 variant expressing human
SMN in NHP and piglets
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Dorsal root neuron ganglion degeneration

Liver histopathologic findings Hinderer et al, Hum Gene Ther 2018




AAV-induced dorsal root ganglion pathology in
NHP
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Immunomodulation makes a difference in SMA
and ALS, alleviates potential DRG toxicity
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Potential toxicities — ex vivo lentiviral HSC gene
therapy

* myeloablation related events

* transient nausea, vomiting, infections, fever,

* insertional mutagenesis

* in retroviral gene therapy trials: leukemia (eg SCID - severe

combined immune deficiency)

* recent events in lentiviral gene therapy: myelodysplastic

syndrome




Conclusion

1. Encouraging efficacy data of first GT trial in ALD

— Lenti-D gene therapy may offer an alternative to allo-
HSCT in patients with early cerebral disease, particularly
for patients with no matched sibling donor

2. Specific phenotypes within an individual leukodystrophy
require different approaches (ex vivo versus in vivo GT)
3. The timing of intervention is critical:
— When early inflammation visible on brain MRI
— Before lesion too extensive




Conclusion

1. Within each phenotype the target structures and cells are
critical:

— In brain disease, microglial pathology is prominent and
correction of myeloid cells contributes to brain health.

— In spinal cord disease, no disruption of the BBB is present
and AAV-mediated gene transfer via intrathecal osmotic
pump leads to widespread expression across spinal cord
and dorsal root ganglia.

2. Success of gene therapy may depend on understanding of
network hubs such as the thalamus and dorsal root ganglia,
allowing biodistribution and connectivity

3. Route and overall approach to gene therapy delivery makes a
difference — technologies evolving and need to be matched to
biology
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