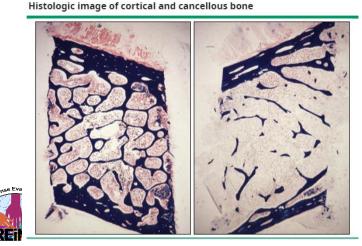


 $R_{esponse} E_{valuation} In N_{eurofibromatosis} S_{chwannomatosis} \\ INTERNATIONAL COLLABORATION$

- If sharing any data or information from these slides generated by the REiNS International Collaboration, please acknowledge the authors, group chairs, and specific working group.
- If using any information presented with a citation, please reference the primary source.

Longitudinal Evaluation of Bone Density in Children & Young Adults with Neurofibromatosis Type 1

> Andrea Gross, MD Katherine Myers, BS


> > March 22, 2021

 $R_{esponse} E_{valuation} I_n N_{eurofibromatosis} S_{chwannomatosis} \\ INTERNATIONAL COLLABORATION$

Bone Mineral Density (BMD) & NF1

- Measured with dual-energy x-ray absorptiometry (DEXA)
- NF1 associated with osteopenia and osteoporosis in adults
 Up to 20% of adults with NF1 have osteoporosis
- Challenges to normalizing pediatric BMD
 - Bone size, height, pubertal status, ethnicity
 - Diagnosis of osteoporosis requires history of fracture
- Need to use Height, Age and Sex-Adjusted Z-scores

https://www.uptodate.com/contents/normal-skeletal-development-and-regulation-of-bone-formation-and-resorption

Normal Distribution

Bone Mineral Density & Pediatric NF1

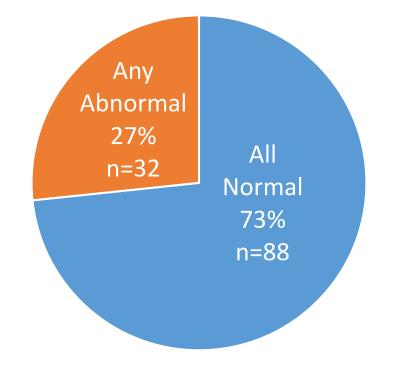
- Decreased BMD in many children with NF1
 - Stevenson et al 2007: Decreased BMD in multiple body regions compared to normal controls (n=84 with NF1)
 - Lodish et al 2012: 47% of patients had impaired BMD in at least one bone site (n=69)
 - Other studies have shown similar results
- Limited prior longitudinal evaluations of BMD in children and young adults:
 - Brunetti-Pierri et al 2008:
 - Two-year follow up on 8 patients with abnormal BMD and elevated parathyroid hormone
 - Started on Vitamin D & Calcium therapy
 - No improvement in BMD after 2 years

Objectives

- Using the NCI NF1 Natural History Cohort*, evaluate changes in BMD Height-Adjusted Z-Score (HAZ) over time
 - Differences by number/type of bony abnormalities or fracture history
 - Any detectable effect of PN-directed treatment initiated between scans
- Gauge any correlation between bone-related labs and BMD HAZ and changes over time

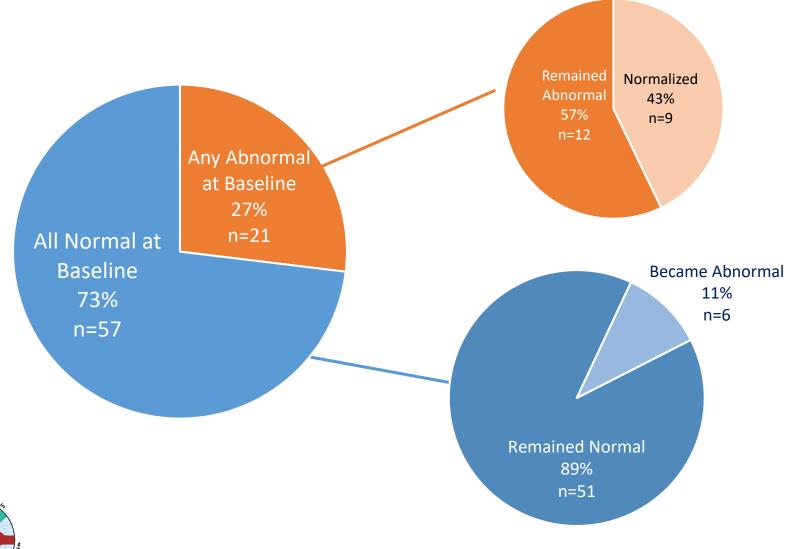
Methods

- Baseline subject characteristics, bony abnormalities, fracture history
- Serial DEXA scans (baseline vs most recent)
- Calculated HAZ for subtotal body, Lumbar Spine, and femoral neck
 - Excluded scans including hardware
- Labs to evaluate bone health:
 - Calcium, alkaline phosphatase, intact parathyroid hormone, 25-OH Vitamin D
- Statistical analyses:
 - Paired and unpaired t-tests for BMD comparisons
 - Spearman correlations to comparer bone labs and BMD Z scores



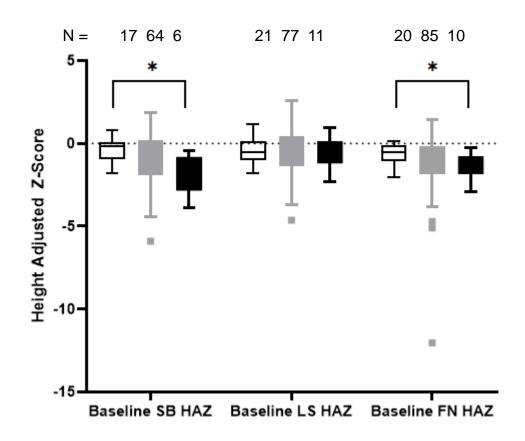
Subject Characteristics

	Baseline Characteristics				
	All Baseline (n = 120)	Baseline with Follow-Up (n = 78)			
Median Age, years (range)	12.8 (5, 32.2)	11.4 (5.1, 28.3)			
Sex – Male/Female	68/52	43/35			
Presence of at least 1 Bony Abnormality (%)	99 (83)	67(86)			
Scoliosis (%)	88 (73)	60 (77)			
Sphenoid Wing Dysplasia (%)	17 (14)	11 (14)			
Long Bone Dysplasia	6 (5)	3 (4)			
History of Fracture (%)	35 (29)	26 (33)			
Median Time Between Scans	N/A	3.9 years			


All Baseline Height-Adjusted Z-Scores (n = 120)

	n	Median Height Adjusted Z-Score	# Abnormal* (%)
Subtotal Body	87	-0.78	17 (19.5)
Lumbar Spine	109	-0.51	9 (8.2)
Femoral Neck	115	-0.98	20 (17.3)

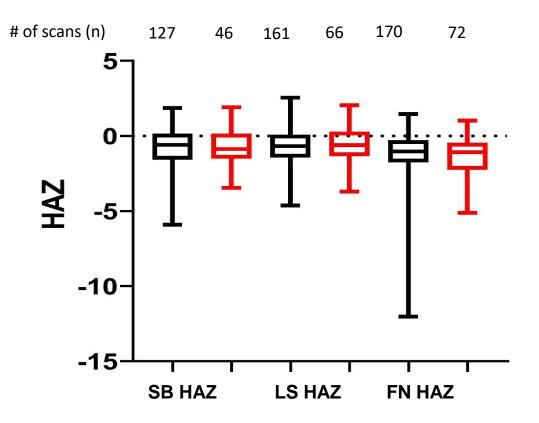
Height-Adjusted Z-Scores with Follow-Up (n = 78)


Paired Height-Adjusted Z Scores: Change Over Time (n = 78)

	n	0	HAZ at	Median HAZ at Most Recent Scan	Median Time between Scans	Median Difference
Subtotal HAZ	58	11.96	-0.95	-0.525	3.18	• 0.30*
Lumbar Spine HAZ	66	11.21	-0.31	-0.64	3.9	↓ -0.23*
Femoral Neck FIAZ	74	11.40	-0.94	-0.98	4.04	0.00

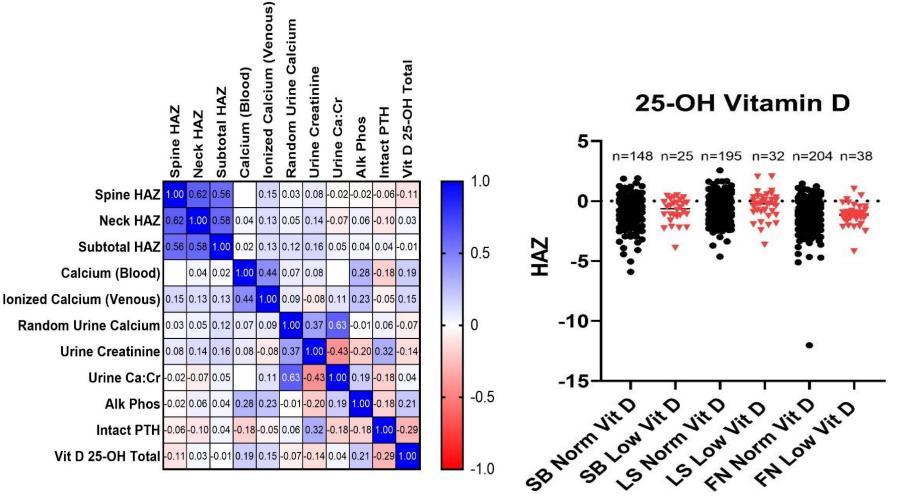
• No difference in change in HAZ over time by surgical, medical, or MEK inhibitor treatment status

Bony Abnormalities at Baseline



Subtotal Body and Femoral Neck HAZ significantly lower in subjects with 2 bony abnormalities

No significant difference in HAZ at baseline by type of bony abnormality: scoliosis vs. long bone dysplasia


No Difference in HAZ BMD Between Patients with and Without Fracture

- Black: No history of fracture
- Red: History of fracture

BMD and **Bone** Lab Relationships

No significant correlations between HAZ BMD and bone-related labs

Limitations

- Multiple analyses may lessen statistical significance
- Excluding patients with hardware may skew results
- Significant number of patients with only single DEXA scan (35.5%)
- Subgroup analyses limited by small numbers
 - Bony abnormalities, especially multiple abnormalities

Conclusions and Future Directions

- 27% of subjects had at least one body region with abnormal HAZ (≤ -2) at baseline
 - <u>After ~4 Years of Follow up:</u>
 - If abnormal, more than half stayed abnormal
 - If normal, most stayed normal
- Subtotal body HAZ increased and lumbar spine HAZ decreased over time
- Did not find a relationship between HAZ BMD and bone-related labs, fracture history, or treatment between scans

– Need further, targeted study of treatment effects

Extra Slides

Neurofibromatosis 1 (NF1) & Bone

- Spinal Deformities
 - Scoliosis; vertebral scalloping/wedging
- Long Bone Dysplasia/ Pseudoarthrosis
- Metabolic Bone Disease/ Decreased bone mineral density

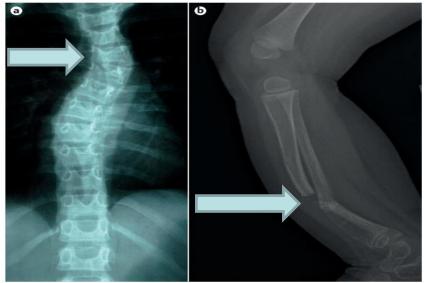
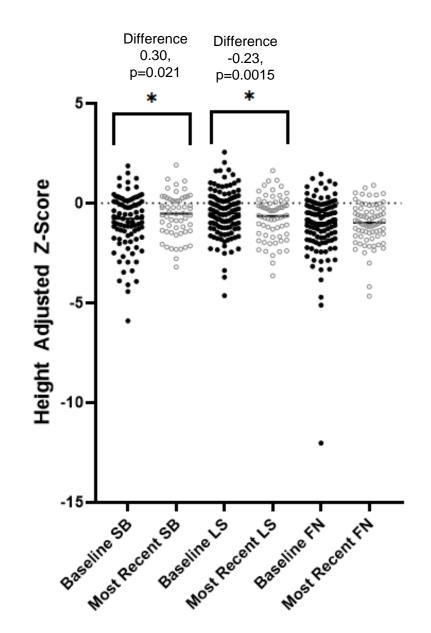



Figure 7 | Skeletal defects in neurofibromatosis type 1. Individuals with neurofibromatosis type 1 can present with a range of skeletal defects, including dystrophic scoliosis (part a) and tibial dysplasia (part b), which can be detected by radiographic imaging.


(Gutmann 2017)

(Jacquemin 2002)

Height-Adjusted Z Scores (HAZ)

