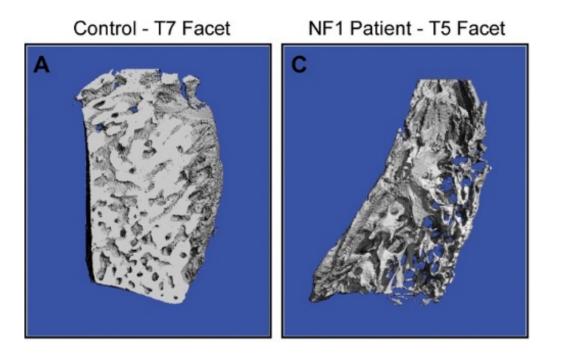


 $R_{esponse} E_{valuation} In N_{eurofibromatosis} S_{chwannomatosis} \\ INTERNATIONAL COLLABORATION$ 

- If sharing any data or information from these slides generated by the REiNS International Collaboration, please acknowledge the authors, group chairs, and specific working group.
- If using any information presented with a citation, please reference the primary source.

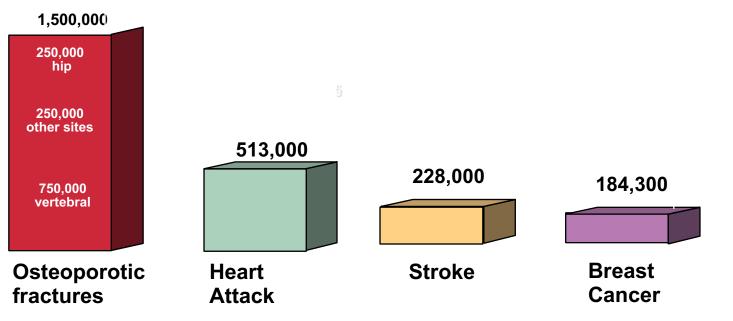
# Techniques and Endpoints for Osteoporosis in NF1


David Stevenson, MD Stanford University



# Terminology

Bone Mineral Density (BMD): amount of bone mineral in bone tissue Osteoporosis:


adults: BMD T-score <-2.5 at hip or spine\* children: BMD Z-score ≤-2 and a clinically significant fracture history <u>Osteopenia:</u> Lower than normal BMD (controversy on terminology) <u>Bone Macro- and Micro-architecture:</u> shape, structure and size



\*Treatment based on clinical risk factors (FRAX tool)



#### Osteoporosis Fracture Incidence > Heart Attack + Stroke + Breast Cancer



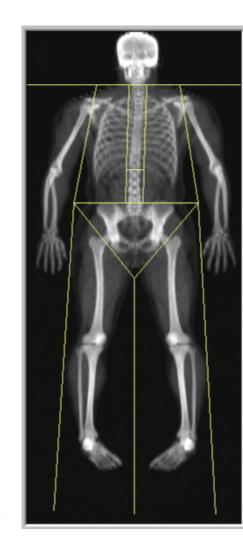


# Decreased Bone Density in NF1

Multiple reports in NF1 (few examples below):

- 1. Illes et al., 2001 (Decrease in BMD of lumbar spine in 12 NF1 patients with scoliosis; DXA).
- Kuorilehto et al., 2005 (Decreased BMD in 26 NF1 adults; DXA. All postmenopausal NF1 women had either osteoporosis or osteopenia)
- 3. Lammert et al., 2005 (Calcaneal values decreased in 104 NF1 adults; QUS)
- 4. Stevenson et al., 2007 (84 NF1 children; DXA)
- 5. Dulai et al., 2007 (23 NF1 children; DXA and QUS)



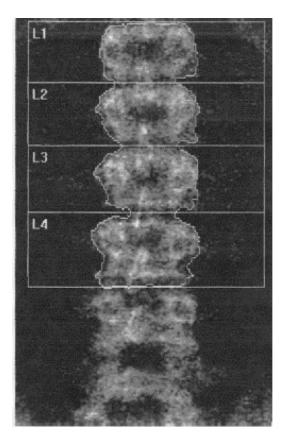

- 6. Yilmaz et al., 2007 (31 NF1 children; DXA)
- 7. Lodish et all, 2012 (69 NF1 children, DXA)

# Impact of Low BMD in NF1

- Consequences of decreased BMD in NF1
  - Several studies show increased fractures (Tucker et al., 2009; Heerva et al., 2012)
- Peak accrual of bone mass is in early adulthood.
- Will traditional medications for osteoporosis in the general population translate to NF1 population?



# Dual Energy X-ray Absorptiometry (DXA)






**Body Regions:** 

- Whole body subtotal
- Hip
- Femoral Neck
- Lumbar Spine





# **DEXA Results**

- Report absolute values for individual regions (gm/cm<sup>2</sup>)
- Not volumetric (areal scores)
- T-scores used for adults
- In children can generate normalized Z-score to compare to other patients with similar age, race and sex
- For pediatrics, need to adjust for height as well ("Height Adjusted Z-score")
- Results vary with machine
- Other variables are being studies (e.g. trabecular bone score)



| Variable                                                      | adjusted mean  |                                  |                               | equality of adjusted means<br>(p-value)       |                                                        |                      |
|---------------------------------------------------------------|----------------|----------------------------------|-------------------------------|-----------------------------------------------|--------------------------------------------------------|----------------------|
|                                                               | Controls       | NF1 (no<br>osseous<br>dysplasia) | NF1<br>(osseous<br>dysplasia) | Controls vs.<br>NF1 (no osseous<br>dysplasia) | NF1 (no osseous<br>dysplasia vs.<br>osseous dysplasia) | overall p-value      |
| Hip<br>BMC (gm)<br>aBMD (gm/cm <sup>2</sup> )                 | 21.48<br>0.779 | 18.41<br>0.711                   | 15.55<br>0.668                | p<0.0001<br>p<0.0001                          | p=0.0099<br>p=0.0513                                   | p<0.0001<br>p<0.0001 |
| Femoral Neck<br>BMC (gm)<br>aBMD (gm/cm <sup>2</sup> )        | 3.16<br>0.720  | 2.88<br>0.658                    | 2.66<br>0.621                 | p=0.0004<br>p<0.0001                          | p=0.0647<br>p=0.0823                                   | p<0.0001<br>p<0.0001 |
| Lumbar Spine<br>BMC (gm)<br>aBMD (gm/cm <sup>2</sup> )        | 34.3<br>0.711  | 32.1<br>0.677                    | 30<br>0.665                   | p=0.0381<br>p=0.0152                          | p=0.2598<br>p=0.0253                                   | p=0.0074<br>p=0.0092 |
| Whole Body Subtotal<br>BMC (gm)<br>aBMD (gm/cm <sup>2</sup> ) | 1021<br>0.777  | 935<br>0.735                     | 865<br>0.720                  | p=0.0003<br>p<0.0001                          | p=0.1946<br>p=0.3171                                   | p<0.0001<br>p<0.0001 |



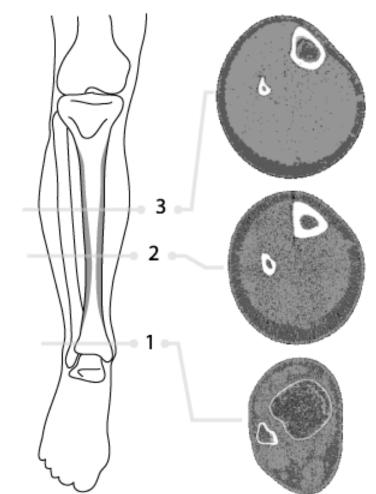
\*Comparison adjusted for gender, Tanner stage, weight, height, and age using analysis-of-covariance with a fixed set of covariates. The column labeled "overall p-value" is the test for overall equality of adjusted means in the three groups from analysis of variance. [Controls (N= 290); NF1 without osseous dysplasia (N=60); NF1 with osseous dysplasia (N=24)].

(Stevenson et al., J Peds, 2007)

# Dual Energy X-ray Absorptiometry (DXA)

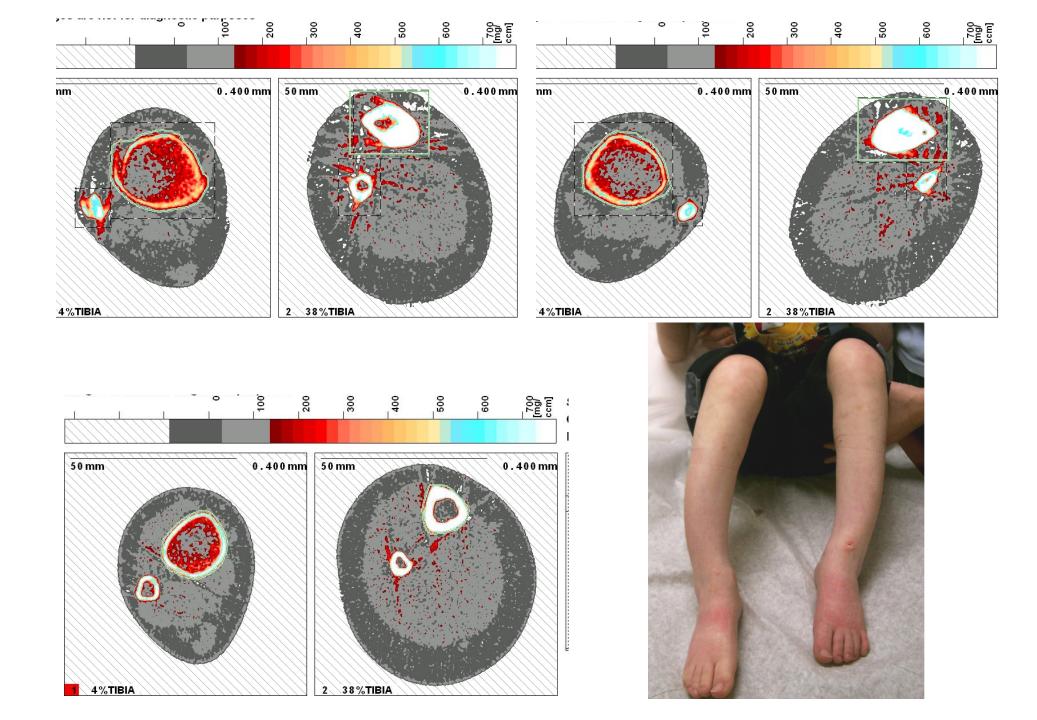
#### <u>Pros</u>

- Most clinically used
- Global assessment
- Data in NF1


<u>Cons</u>

- Radiation (minimal)
- Areal measurement (not volumetric)




Quantitative Computed Tomography (pQCT)







Different sites available (spine; peripheral QCT = tibia, radius)





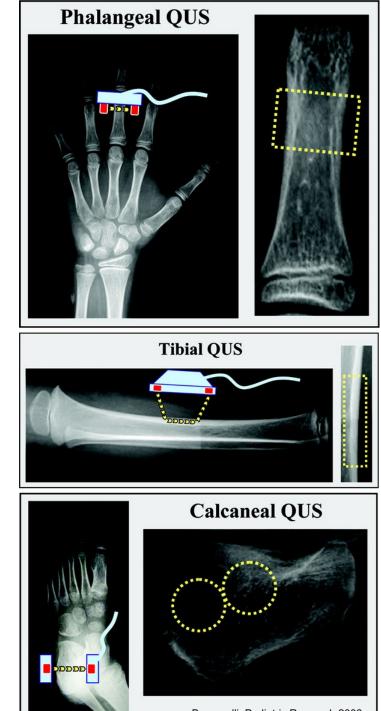
# QCT/pQCT

#### <u>Pros</u>

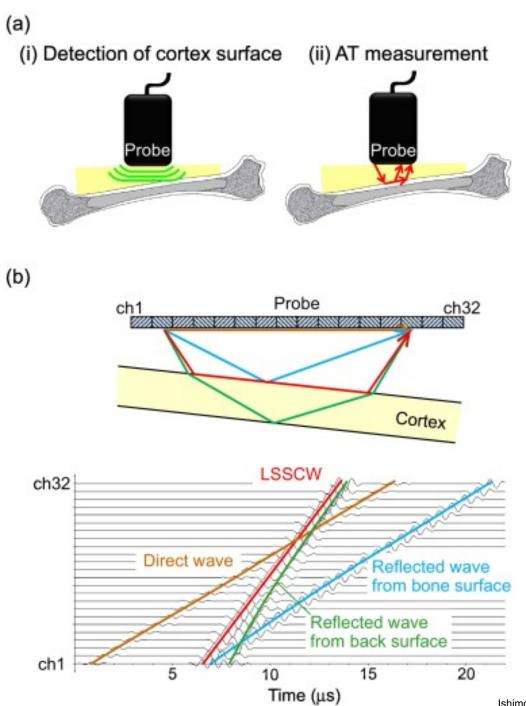
- Volumetric 3D measures
- More detailed (trabecular, cortical, strength strain index)
- Can model biomechanical strength
- Data in NF1
- Ability to use patient as control for localized manifestations



#### <u>Cons</u>


- Radiation (minimal if peripheral)
- Localized
- Age restrictions (pQCT)
- Can be more costly
- Complex with specialized software

#### **Quantitative Bone Ultrasound**


- Measures Speed of Sound (SOS) m/s
- Z-score generated using sex- and age-matched references
- Various sites available (calcaneus, tibia, forearm)







Baroncelli, Pediatric Research 2008







### NF1 Tibial Bowing Study

#### <u>Quantitative Bone</u> <u>Ultrasound (QUS):</u>

Lower mean difference z-score for affected tibia (p=0.0001)



| Participant     | Age<br>(years) | Sex | Tibia<br>Affected | Z-score<br>Unaffected<br>Tibia | Z-score<br>Bowed Tibia |
|-----------------|----------------|-----|-------------------|--------------------------------|------------------------|
| Participant #1  | 1.4            | Μ   | Left              | -0.7                           | -1.0                   |
| Participant #2  | 13.5           | Μ   | Left              | -3.3                           | -2.4                   |
| Participant #3  | 22.3           | F   | Left              | +1.3                           | -1.0                   |
| Participant #4  | 5.6            | Μ   | Right             | -0.7                           | -3.7                   |
| Participant #5  | 12.6           | F   | Right             | +0.3                           | -0.5                   |
| Participant #6  | 0.8            | Μ   | Right             | -1.7                           | -4.2                   |
| Participant #7  | 7.5            | Μ   | Left              | -0.3                           | -1.0                   |
| Participant #8  | 4.5            | F   | Left              | -0.3                           | -3.9                   |
| Participant #9  | 5.3            | F   | Right             | +0.5                           | -7.5                   |
| Participant #10 | 8.8            | Μ   | Right             | -0.7                           | -4.5                   |
| Participant #11 | 7.1            | F   | Right             | -2.4                           | -3.2                   |
| Participant #12 | 1.7            | Μ   | Left              | +3.2                           | -5.2                   |
| Participant #14 | 2.1            | F   | Right             | -0.2                           | -5.2                   |
| Participant #16 | 6.2            | Μ   | Left              | -2.3                           | -3.9                   |
| Participant #17 | 2.4            | F   | Right             | -0.5                           | -2.2                   |
| Participant #18 | 2.3            | F   | Left              | +0.7                           | -2.8                   |
| Participant #19 | 3.8            | Μ   | Left              | +0.9                           | -2.8                   |
| Participant #20 | 7.0            | F   | Right             | -0.2                           | -0.4                   |
| Participant #21 | 19.3           | F   | Left              | -0.5                           | -0.5                   |
| Participant #22 | 9.3            | F   | Right             | +0.2                           | -1.0                   |
| Participant #23 | 16.3           | F   | Left              | +1.1                           | -1.4                   |

## **Bone Ultrasound**

#### <u>Pros</u>

- No radiation
- Data in NF1
- Quick (all ages)
- Non-invasive
- Portable
- Ability to use patient as control for localized
   manifestations

### <u>Cons</u>

- Localized
- Not used widely clinically
- Limited control data



## **MRI for Bone**

- Not well studied
- Evaluation of bone marrow fat quantification (limited cortical bone assessment)
- Limited quantitative measurements (more qualitative)



# **MRI for Bone**

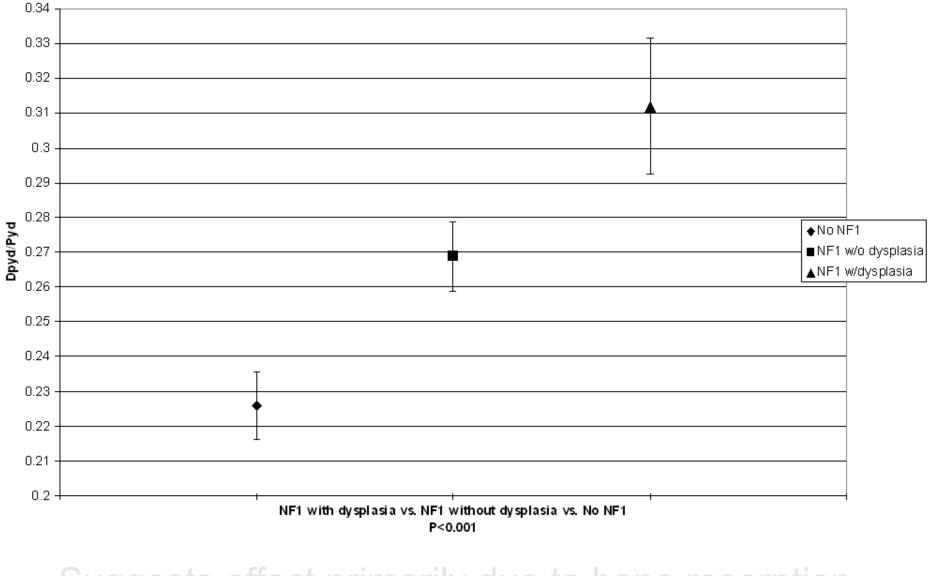
#### <u>Pros</u>

- No radiation
- Potential for detailed evaluation of bone at microarchitechtural and molecular level
- MRI frequently performed in NF1

#### <u>Cons</u>

- Limited studies
- No data in NF1
- Expense
- More time consuming
- Not typically used clinically
- Lower spatial resolution
  than CT




# Markers of Bone Turnover

(significant variability - day to day and hourly; meals etc.)

- Resorption
  - Urine pyridinium crosslinks (urine easy to obtain; data in NF1)
  - C-terminal telopeptide (CTX)
  - N-terminal telopeptide (NTX)
- Formation
  - Osteocalcin (need for prompt and special handling)
  - Bone specific alkaline phosphatase (some cross-reactivity with liver isoform)
  - Procollagen type 1 N propeptide (P1NP)



#### LS Means of Ratio of Deoxypyridinoline to Pyridinoline Controlling for Age





-Suggests effect primarily due to bone resorption

Different modalities measure different variables DXA: (areal BMD) pQCT: (volumetric BMD, trabecular and cortical indices, endosteal circ., etc.) QUS: (speed of sound)

What variable should we measure? Some state BMD may be the wrong measure (density is not synonymous with mass or structural strength).

