Trial Design Module Part 3: Phases of Clinical Trials

Slides from: Elizabeth Ness, RN, MS Nurse Consultant (Education) Center for Cancer Research, NCI January 2016

Agenda

- Phase I
- Phase II
- Phase III
- Phase IV

Phase I: Goals

- Determine dosing in humans
 - Maximum Tolerated Dose (MTD)
- Assess safety
- Evaluate PKs and PDs
- Explore drug metabolism and drug interactions

Phase I: Additional Goal(s)

- Also used to:
 - Evaluate new treatment schedule
 - Evaluate new drug combination strategy
 - Evaluate new multi-modality regimen

May provide early evidence of response, but NOT primary aim

Phase I: Subjects

- · Healthy volunteers
- Patient volunteers
- Small numbers
 - 15 30 <100

Phase I Trial Participant Comparisons

Healthy Volunteer

- Illness Free
- Monetary Compensation
- No anticipated personal benefit
- · Generally, no more than minimal risk

Patient

- Usually end-stage with few if any options for treatment
- "Opportunity" to receive intervention
- · Low prospect of personal benefit
- · More than minimal risk

Phase I: Standard Design

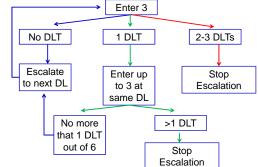
- Open label, non-randomized, dose escalation
- · Low starting dose
 - 1/10th the lethal dose (LD10) in the most sensitive species tested = dose at which 10% of the animals
 - · Unlikely to cause serious toxicity
 - Pediatric dose starts at 80% of adult MTD
- 3-6 patients per cohort
- Increase dose gradually
 - Most common scheme is a Modified Fibonacci

Classic Modified Fibonacci Dose Escalation Scheme

% Increase Above Preceding Dose:

Level 1: Starting dose

Level 2: 100% increase from Level 1


Level 3: 67% increase from Level 2

Level 4: 50% increase from Level 3

Level 5: 40% increase from Level 4

Levels 6+: 33% increase from Level 5+

3 + 3 Study Design Enter 3

2	
S	

Alternate Designs

Accelerated design

• 1 subject enrolled per DL until grade 2 toxicity then return to the 3 + 3 design

<u>OBD</u>

- Find dose that is considered to safe and have optimal biologic/ immunologic effect (OBD)
- Optimize "biomarker" response within safety constraints

Intrapatient Dose Escalation

- Once a DL has been proven "safe" then subjects at lower levels are able to escalate to the "safe" level
- Subject used as own control and can escalated to higher DL if lower level tolerated

Healthy Volunteer Trial Designs

- Single Ascending Dose (SAD)
- Multiple Ascending Dose (MAD)
- PK/PD
- · Food effect studies
- Drug-drug interaction studies
- · Q-T interval studies

Phase I: Endpoints

- Dose Limiting Toxicity (DLT)
 - Define prospectively using rating scale and time limit
- Maximum Tolerated Dose (MTD)
 - Highest dose level at which ≤1/6 patients develop a DLT
- PK/PD

-
-
-
-

Phase I: Limitations

- · Questionable risks without benefits
- Initial patients may be treated at low doses
- Slow to complete trial
- Toxicity may be influenced by extensive prior therapy
- Inter-patient variability
- MTD definition is imprecise
- Minimal data about cumulative toxicity

Phase II: Goals

- Provide initial assessment of efficacy or 'clinical activity'
 - Screen out ineffective drugs
 - Identify promising new drugs for further evaluation
- Further define safety and toxicity

Phase II: Subjects

- ~100 subjects (100-300)
- More homogenous population that is deemed likely to respond based on:
 - phase I data
 - pre-clinical models, and/or
 - mechanisms of action
- Subject needs to have measurable disease
- May limit number of prior treatments

•		
•		
•		
•		

Phase 2: Designs

- Most common
 - 2 stage design w/ early stopping rule
- Randomized designs
 - Want to explore efficacy
 - Not willing to invest in phase III (yet)
 - Want some "control" or "prioritization"

Phase II: Endpoints

- ResponseAdditional safety data

Phase II: Limitations

- · Lack of activity may not be valid
- Have to be able to measure the disease

Phase III: Goals

- Efficacy compared to standard therapy
 - Activity demonstrated in Phase II study
- Further evaluation of safety

Phase III: Subjects

- Hundreds to thousands of subjects
- May be front-line or initial therapy
- Well-defined eligibility criteria
- Internal control group
- Multi-institutional participation necessary to reach targeted accrual goals

Phase III: Standard Design

- Randomized +/- blinding/masking
- · Consider stratification

Phase III: Endpoints

- Efficacy
 - Overall survival
 - Disease-free survival
 - Symptom control
 - · Quality of life

Phase III: Limitations

- Difficult, complex, expensive to conduct
- Large number of patients required
- Incorporation of results into front-line therapy in community is often slow and incomplete

Phase IV Trial

Follow-up investigation to further evaluate risks, benefits, and optional use of a recently approved drug:

- Different doses or schedules of administration
- Use of the drug in other:
 - Patient populations
 - stages of the disease
- Use of the drug over a longer period of time

-		