Skip to end of metadata
Go to start of metadata

2017 Publications

Title
AuthorsReferencePMID
Contributions of individual domains to function of the HIV-1 Rev response element.O'Carroll IPThappeta YFan LRamirez-Valdez EASmith SWang YXRein A.J Virol. 2017 Aug 16. pii: JVI.00746-17. doi: 10.1128/JVI.00746-17. [Epub ahead of print]28814520

Dissection of specific binding of HIV-1 Gag to the 'packaging signal' in viral RNA.

Comas-Garcia MDatta SABaker LVarma RGudla PRRein A.Elife. 2017 Jul 20;6. pii: e27055. doi: 10.7554/eLife.27055.28726630

Long Noncoding RNA PURPL Suppresses Basal p53 Levels and Promotes Tumorigenicity in Colorectal Cancer.

Li XLSubramanian MJones MFChaudhary RSingh DKZong XGryder BSindri SMo MSchetter AWen XParvathaneni SKazandjian DJenkins LMTang WElloumi FMartindale JLHuarte MZhu YRobles AIFrier SMRigo FCam MAmbs SSharma SHarris CCDasso MPrasanth KVLal A.Cell Rep. 2017 Sep5;20(10):2408-2423. doi: 10.1016/j.celrep.2017.08.041.28877474

Prosurvival long noncoding RNA PINCR regulates a subset of p53 targets in human colorectal cancer cells by binding to Matrin 3.

Chaudhary RGryder BWoods WSSubramanian MJones MFLi XLJenkins LMShabalina SAMo MDasso MYang YWakefield LMZhu YFrier SMMoriarity BSPrasanth KVPerez-Pinera PLal A.Elife. 2017 Jun 5;6. pii: e23244. doi: 10.7554/eLife.23244.28580901

Oncogenic Activation of the RNA Binding Protein NELFE and MYC Signaling in Hepatocellular Carcinoma.

Dang HTakai AForgues MPomyen YMou HXue WRay DHa KCHMorris QDHughes TRWang XW.Cancer Cell. 2017Jul10;32(1):101-114.e8. doi: 10.1016/j.ccell.2017.06.002.28697339

The Functional Cycle of Rnt1p: Five Consecutive Steps of Double-Stranded RNA Processing by a Eukaryotic RNase III.

Song HFang XJin LShaw GXWang YXJi X.Structure. 2017 Feb 7;25(2):353-363. doi: 10.1016/j.str.2016.12.013. Epub 2017 Jan 19.28111020
Virus-Mediated Alterations in miRNA Factors and Degradation of Viral miRNAs by MCPIP1.  Happel CRamalingam DZiegelbauer JM.PLoS Biol. 2016 Nov 28;14(11):e2000998. doi: 10.1371/journal.pbio.2000998. eCollection 2016 Nov.27893764

Viral MicroRNAs Repress the Cholesterol Pathway, and 25-Hydroxycholesterol Inhibits Infection.

Serquiña AKPKambach DMSarker OZiegelbauer JM.MBio. 2017 Jul 11;8(4). pii: e00576-17. doi: 10.1128/mBio.00576-17.28698273
    
    

 

 

Other publications

pubmed: (caplen n[au] or fel...
NCBI: db=pubmed; Term=(Caplen N[AU] OR Felber B[AU] OR Franchini V[AU] OR Freed E[AU] OR Gottesman S[AU] OR Grewal S[AU] OR Harris C[AU] OR Hu W[AU] OR Huang J[AU] OR Hughes S[AU] OR Jessup J[AU] OR Ji X[AU] OR Johnson P[AU] OR Kashlev M[AU] OR KewalRamani V[AU] OR Khan J[AU] OR Kwong K[AU] OR Lal A[AU] OR Larson D[AU] OR LeGrice S[AU] OR Luo J[AU] OR Meltzer P[AU] OR Merlino G[AU] OR Mili V[AU] OR Misteli T[AU] OR Oberdoerffer S[AU] OR Pathak V[AU] OR Pavlakis G[AU] OR Rein A[AU] OR Ried T[AU] OR Shapiro B[AU] OR Singer D[AU] OR Staudt L[AU] OR Strathern J[AU] OR Wang Y[AU] OR Wang X[AU] OR Weissman A[AU] OR Young H[AU] OR Zhang Y[AU] OR Zheng ZM[AU] OR Zhurkin V[AU] OR Ziegelbauer J[AU]) AND (Bethesda OR Frederick)
Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk.
Related Articles

Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk.

Nat Commun. 2018 Aug 13;9(1):3221

Authors: Ji X, Bossé Y, Landi MT, Gui J, Xiao X, Qian D, Joubert P, Lamontagne M, Li Y, Gorlov I, de Biasi M, Han Y, Gorlova O, Hung RJ, Wu X, McKay J, Zong X, Carreras-Torres R, Christiani DC, Caporaso N, Johansson M, Liu G, Bojesen SE, Le Marchand L, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Chen C, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Shen H, Hong YC, Yuan JM, Bertazzi PA, Pesatori AC, Ye Y, Diao N, Su L, Zhang R, Brhane Y, Leighl N, Johansen JS, Mellemgaard A, Saliba W, Haiman C, Wilkens L, Fernandez-Somoano A, Fernandez-Tardon G, van der Heijden EHFM, Kim JH, Dai J, Hu Z, Davies MPA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Doherty J, Goodman GE, Cox A, Taylor F, Woll P, Brüske I, Manz J, Muley T, Risch A, Rosenberger A, Grankvist K, Johansson M, Shepherd F, Tsao MS, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, Duell EJ, Butler LM, Koh WP, Gao YT, Houlston R, McLaughlin J, Stevens V, Nickle DC, Obeidat M, Timens W, Zhu B, Song L, Artigas MS, Tobin MD, Wain LV, Gu F, Byun J, Kamal A, Zhu D, Tyndale RF, Wei WQ, Chanock S, Brennan P, Amos CI

Abstract
Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.

PMID: 30104567 [PubMed - in process]

Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018.
Related Articles

Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018.

Arch Virol. 2018 Aug;163(8):2295-2310

Authors: Maes P, Alkhovsky SV, Bào Y, Beer M, Birkhead M, Briese T, Buchmeier MJ, Calisher CH, Charrel RN, Choi IR, Clegg CS, de la Torre JC, Delwart E, DeRisi JL, Di Bello PL, Di Serio F, Digiaro M, Dolja VV, Drosten C, Druciarek TZ, Du J, Ebihara H, Elbeaino T, Gergerich RC, Gillis AN, Gonzalez JJ, Haenni AL, Hepojoki J, Hetzel U, Hồ T, Hóng N, Jain RK, Jansen van Vuren P, Jin Q, Jonson MG, Junglen S, Keller KE, Kemp A, Kipar A, Kondov NO, Koonin EV, Kormelink R, Korzyukov Y, Krupovic M, Lambert AJ, Laney AG, LeBreton M, Lukashevich IS, Marklewitz M, Markotter W, Martelli GP, Martin RR, Mielke-Ehret N, Mühlbach HP, Navarro B, Ng TFF, Nunes MRT, Palacios G, Pawęska JT, Peters CJ, Plyusnin A, Radoshitzky SR, Romanowski V, Salmenperä P, Salvato MS, Sanfaçon H, Sasaya T, Schmaljohn C, Schneider BS, Shirako Y, Siddell S, Sironen TA, Stenglein MD, Storm N, Sudini H, Tesh RB, Tzanetakis IE, Uppala M, Vapalahti O, Vasilakis N, Walker PJ, Wáng G, Wáng L, Wáng Y, Wèi T, Wiley MR, Wolf YI, Wolfe ND, Wú Z, Xú W, Yang L, Yāng Z, Yeh SD, Zhāng YZ, Zhèng Y, Zhou X, Zhū C, Zirkel F, Kuhn JH

Abstract
In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.

PMID: 29680923 [PubMed - indexed for MEDLINE]

Taxonomy of the order Mononegavirales: update 2018.
Related Articles

Taxonomy of the order Mononegavirales: update 2018.

Arch Virol. 2018 Aug;163(8):2283-2294

Authors: Amarasinghe GK, Aréchiga Ceballos NG, Banyard AC, Basler CF, Bavari S, Bennett AJ, Blasdell KR, Briese T, Bukreyev A, Caì Y, Calisher CH, Campos Lawson C, Chandran K, Chapman CA, Chiu CY, Choi KS, Collins PL, Dietzgen RG, Dolja VV, Dolnik O, Domier LL, Dürrwald R, Dye JM, Easton AJ, Ebihara H, Echevarría JE, Fooks AR, Formenty PBH, Fouchier RAM, Freuling CM, Ghedin E, Goldberg TL, Hewson R, Horie M, Hyndman TH, Jiāng D, Kityo R, Kobinger GP, Kondō H, Koonin EV, Krupovic M, Kurath G, Lamb RA, Lee B, Leroy EM, Maes P, Maisner A, Marston DA, Mor SK, Müller T, Mühlberger E, Ramírez VMN, Netesov SV, Ng TFF, Nowotny N, Palacios G, Patterson JL, Pawęska JT, Payne SL, Prieto K, Rima BK, Rota P, Rubbenstroth D, Schwemmle M, Siddell S, Smither SJ, Song Q, Song T, Stenglein MD, Stone DM, Takada A, Tesh RB, Thomazelli LM, Tomonaga K, Tordo N, Towner JS, Vasilakis N, Vázquez-Morón S, Verdugo C, Volchkov VE, Wahl V, Walker PJ, Wang D, Wang LF, Wellehan JFX, Wiley MR, Whitfield AE, Wolf YI, Yè G, Zhāng YZ, Kuhn JH

Abstract
In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.

PMID: 29637429 [PubMed - indexed for MEDLINE]

Plasma pharmacokinetics and cerebral nuclei distribution of major constituents of Psoraleae fructus in rats after oral administration.
Related Articles

Plasma pharmacokinetics and cerebral nuclei distribution of major constituents of Psoraleae fructus in rats after oral administration.

Phytomedicine. 2018 Jan 01;38:166-174

Authors: Yang YF, Zhang YB, Chen ZJ, Zhang YT, Yang XW

Abstract
BACKGROUND: The fruit of Psoralea corylifolia L., Psoraleae fructus (PF), is widely used in traditional Chinese medicine as a well-known herbal tonic. Previous studies have shown that PF and its major constituents may have potential values in the treatment of Parkinson and Alzheimer diseases, though their pharmacokinetics and brain distribution were largely unknown.
PURPOSE: To develop a liquid chromatographic-tandem mass spectrometry (LC-MS/MS) method for simultaneous studies of the plasma pharmacokinetics and cerebral nuclei (including cerebellum, thalamus, brainstem, hippocampus, corpus striatum and cortex) distribution in rats of eleven known PF compounds following as psoralen, isopsoralen, psoralidin, bavachin, bavachinin, isobavachin, isobavachalcone, bavachalcone, neobavaisoflavone, corylifol A, and corylin.
METHODS: Rats were orally administered via gavage at a single dose of PF extract at 1.2 g/kg. The eleven known PF compounds were extracted from rat plasma and cerebral nuclei at different time points, and then determined by the established LC-MS/MS method. Non-compartmental pharmacokinetic profiles were calculated, and the distribution in rat plasma and cerebral nuclei were compared.
RESULTS: The results showed that all the tested compounds were quickly absorbed into rat plasma and distributed almost evenly to the cerebral nuclei. The distribution concentrations at different nuclei varied at one determined time point, but the overall trends were basically similar to the plasma concentration-time results. Psoralen and isopsoralen, the two highest coumarins contained in PF, displayed far higher plasma concentrations (AUC0→∞, plasma≈53,884∼65,578 ng·h/ml) and central nervous system penetration (AUC0→∞, brain nuclei ≈44,659∼65,823 ng·h/g) than the prenylflavonoids (other compounds except psoralidin, AUC0→∞, plasma≈69∼324 ng·h/ml; AUC0→∞, brain nuclei ≈119∼3662 ng·h/g). However, the total brain-to-plasma ratios of the prenylflavonoids were higher than the coumarins, suggesting the prenylflavonoids can more readily enter the brain than the coumarins.
CONCLUSION: The established LC-MS/MS method is sensitive and specific for the simultaneous quantitation of the eleven PF compounds in rat plasma and cerebral nuclei. The results of plasma pharmacokinetics and cerebral nuclei distribution may reveal the possible substance basis for the CNS activities of PF, and highlight the application possibility of PF and its major constituents in the treatment of Parkinson and Alzheimer diseases.

PMID: 29425649 [PubMed - indexed for MEDLINE]

Click here for all Pubmed records from members.

 

Last updated by Hooper, Laura (NIH/NCI) [E] on Sep 27, 2017