Skip to end of metadata
Go to start of metadata

Click here to return to main plasmids page

 

 

 

 

 

 

 

Papillomaviruses

Paper Name

Reference

Lab Name

Distribute?

Resistance

Notes

BPV1

pSheLL

[1]

pXL∫

AddGene.org

kan

Bicistronic, too large to self-package* 

 

 

 

 

 

 

 

BPV3

 

unpublished

#2903

yes, contact Martin Müller

amp

Bicistronic.  Titer of BPV3 is very poor

 

 

 

 

 

 

 

BPV8

 

unpublished

#2762

yes, contact Martin Müller

amp

Bicistronic codon-modified L1/L2 expression plasmid

 

 

 

 

 

 

 

CRPV

pCRPVsheLL

[2]

p¢LLw

AddGene.org

amp

Bicistronic, too large to self-package* 

 

 

 

 

 

 

 

HPV1

p1sheLL

unpublished

p1LLw

not yet

amp

HPV1 gives poor L1 yield and HPV1 pseudovirus is poorly infectious

 

 

 

 

 

 

 

HPV2

p2sheLL

unpublished

p2LLw

yes

amp

This plasmid produces good yields of HPV2 prototype L1/L2 particles that have essentially no detectable infectivity on any tested cell line.

 

[3] [4]

pRäLw

 

 

This variant (EF362755) HPV2 L1 produces pseudoviruses with detectable (but still extremely poor) infectious titer. Harvest 72h post-transfection

 

paL2

[3]

pä∫

 

 

HPV2 L2 expression plasmid

HPV3

[5]

 

Faust et al

amp

Bicistronic codon-modified L1/L2 expression plasmid. Pseudovirions are poorly infectious

HPV5

p5sheLL

[6]

p5LLw

AddGene.org

amp

Bicistronic, too large to self-package*.  HPV5 has high particle to infectivity ratio on many cell types

 

 

 

 

 

 

 

HPV6

p6sheLLr †

[7]

p6LLw2

AddGene.org

amp

† orignal "p6sheLL" had an unexpected duplication in the backbone due to a cloning error.  The duplication was repaired in p6sheLLr.  p6sheLL and p6sheLLr give essentially identical titer yields for HPV6 pseudovirus production.

 

 

 

 

 

 

 

HPV11

[8]

p11Lw

AddGene.org

kan

Titer of HPV11 pseudovirus is very poor.  Requires Müller MTA.

 

[9]

p11∫w

AddGene.org

kan

 

HPV15

[5]

 

Faust et al

amp

Bicistronic codon-modified L1/L2 expression plasmid. Pseudovirions are poorly infectious

HPV16

p16sheLL

[610]

p16LLw

AddGene.org

amp

Replaces pXuLL.  Bicistronic, too large to self-package*.  Requires Müller MTA. 

 

p16L1L2

[1112]

phüL∫, frankenvirus

AddGene.org

zeo

Synthetic HPV capable of self-packaging. Suitable for infectious amplification in 293TT cells.  This plasmid is prone to collapse*

 

 

 

 

 

 

 

HPV18

p18sheLL

[213]

p18LLw

AddGene.org

amp

Bicistronic, too large to self-package* 

 

 

 

 

 

 

 

HPV27

Senger et al

[3]

 

 

 

 

 

 

 

 

 

 

 

HPV31

p31sheLL

[214]

p31LLw

AddGene.org

amp

Bicistronic, too large to self-package*.  Requires Kanda MTA.

HPV32

[5]

 

Faust et al

amp

Bicistronic codon-modified L1/L2 expression plasmid

HPV33

[5]

 

Faust et al

amp

Bicistronic codon-modified L1/L2 expression plasmid

HPV35

p35sheLL

[15]

5psh35F

AddGene.org

amp

HPV35 L1 and L2 genes codon optimised for mammalian expression. Requires HPA UK MTA

 

 

 

 

 

 

 

HPV38

[16]

 

Faust et al

 

 

 

 

 

 

 

 

 

HPV39

p39sheLL

[15]

39pshC

AddGene.org

amp

HPV35 L1 and L2 genes codon optimised for mammalian expression. Requires HPA UK MTA (Simon Beddows)

 

 

 

 

 

 

 

HPV45

p45sheLL

[26]

p45LLw

AddGene.org

amp

Bicistronic, too large to self-package* 

 

 

 

 

 

 

 

HPV52

p52sheLL

[17]

p52LLw

AddGene.org

amp

Bicistronic, too large to self-package*.  Poor titer yield.  Requires Kanda MTA.

 

 

 

 

 

 

 

HPV56

#3123

unpublished

#3123

yes, contact Martin Müller

amp

Bicistronic codon-modified L1/L2 expression plasmid

 

 

 

 

 

 

 

HPV57

Senger et al

[3]

 

Senger et al

 

 

 

 

 

 

 

 

 

HPV58

p58sheLL

[14]

p58LLw

AddGene.org

amp

Bicistronic, too large to self-package*.  Requires Kanda MTA.

 

 

 

 

 

 

 

HPV59

p59sheLL

[15]

59pshB

yes, contact Simon Beddows

amp

HPV35 L1 and L2 genes codon optimised for mammalian expression. Requires HPA UK MTA

 

 

 

 

 

 

 

HPV68

#2687

unpublished

#2687

yes, contact Martin Müller

amp

Bicistronic codon-modified L1/L2 expression plasmid

HPV68

[5]

 

Faust et al

amp

Bicistronic codon-modified L1/L2 expression plasmid

HPV73

#3122

unpublished

#3122

yes, contact Martin Müller

amp

Bicistronic codon-modified L1/L2 expression plasmid

HPV76

[5]

 

Faust et al

amp

Bicistronic codon-modified L1/L2 expression plasmid

HPVs 6, 8, 11, 18, 26, 31, 33, 34, 35, 38, 29, 40, 42, 43, 44, 51, 52, 53, 56, 59, 66, 68, 70, 73

pVITRO-X-L1L2

[18]

 

AddGene.org

kan

Roden and Kirnbauer labs

 

 

 

 

 

 

 

MusPV1

pMuSheLL

[19]

pMuLLw

AddGene.org

amp

Mammalian expression plasmid with codon modified L1 and L2 genes of Mus musculus papillomavirus type 1*

 

pMusPV

[20-22]

pMusPV

yes

zeo

Synthetic Mus musculus papillomavirus type 1 clone

 

 

 

 

 

 

 

Polyomaviruses

 

 

 

 

 

 

BKV-I

[23]

 

Nakanishi et al

 

VP1/2/3 packaging plasmid for BKV serogroup I (isolate KOM5) reporter vectors

 

pBKV-Ia

[24]

pIaw

yes

zeo

Codon modified BKV genotype Ia VP1 expression plasmid

 

 

 

 

 

 

 

BKV-IV

pwB

[25]

pwB

yes

zeo

VP1 based on BKV serogroup IV isolate A-66H [26]

 

pwB2b

[25]

pwB2b

AddGene.org

zeo

BKV-IV VP1/VP2 dual expression plasmid

 

pwB3b

[25]

pwB3b

AddGene.org

zeo

BKV-IV VP1/VP3 dual expression plasmid

 

ph2b

[25]

ph2b

AddGene.org

zeo

BKV-IV VP2 expression plasmid

 

ph3b

[25]

ph3b

AddGene.org

zeo

BKV-IV VP3 expression plasmid

BKV variants

various

[24]

various

Yes

zeo

Codon modified VP1 ORFs from various BKV genotypes

 

 

 

 

 

 

 

HPyV6

pHPyV6-607a

[27]

pe1D

AddGene.org

zeo

Reference clone of human polyomavirus 6

 

p6VP1

[27]

pe1VP1

AddGene.org

zeo

Human polyomavirus 6 VP1 expression construct

 

 

 

 

 

 

 

HPyV7

pHPyV7-713a

[27]

pe2S

AddGene.org

zeo

Reference clone of human polyomavirus 7

 

p7VP1

[27]

pe2VP1

AddGene.org

zeo

Human polyomavirus 7 VP1 expression construct

 

 

 

 

 

 

 

HPyV10

p10ww

[2829]

p10ww

yes

zeo

Reference clone of human polyomavirus 10 (MWPyV)

 

pVP1Xw

Unpublished

pVP1Xw

not yet

zeo

HPyV10 VP1 mammalian expression (codon modified)

 

pVP2Xh

Unpublished

pVP2Xh

not yet

zeo

HPyV10 VP2 mammalian expression (codon modified)

 

pVP3Xh

Unpublished

pVP3Xh

not yet

zeo

HPyV10 VP3 mammalian expression (codon modified)

 

pVP1Xm

Unpublished

pVP1Xm

not yet

zeo

HPyV10 VP1 fused to MBP (bacterial expression)

 

 

 

 

 

 

 

JCV

[36]

p2Aw

not yet

zeo

Codon-modified JCV-2A (wt) VP1 expression plasmid

 

p3B

[36]

p3Brw

not yet

zeo

Codon-modified JCV-3B (wt) VP1 expression plasmid

 

[30]

p1Aw

Atwood Lab

zeo

Codon-modified JCV-Mad1 (genotype 1A) VP1 expression plasmid

 

p5147w

[36]

p5053w

not yet

zeo

Inferred wt VP1 sequence of PML patients 5053, 5147, 5228

 

p5147m

[36]

p5228m

not yet

zeo

PML-mutant VP1 sequence from CSF of PML patient 5147, 5228

 

pJCV-VP2

[36]

ph2j

not yet

zeo

Codon-modified JCV consensus VP2 expression plasmid

 

pJCV-VP3

[36]

ph3j

not yet

zeo

Codon-modified JCV consensus VP3 expression plasmid

 

 

 

 

 

 

 

MCV

pMCV-R17a

[27]

pMCV-L

AddGene.org

kan

Wild-type MCV from healthy skin

 

pMCV-R17b

[27]

p17A

yes

zeo

MCV w.t. reference clone. Replicates a bit better than R71a [31]

 

pMCV-16b

unpublished

p16A

yes

zeo

MCV–R17a chimera with NCRR of Asian isolate MCV-16b 

 

pwM

[32]

pwM

AddGene.org

zeo

Merkel cell polyomavirus (MCV) VP1 expression construct

 

ph2m

[32]

ph2m

AddGene.org

zeo

MCV VP2 expression construct

 

pwM2m

[33]

pwM2m

yes

zeo

MCV VP1/VP2 dual expression (VP2 expression relatively weak)

 

pMmw

[34]

pMmw

yes

amp

MCV VP1/VP2 expression, too big to self-package*

 

p2mw

[34]

P2mw

yes

amp or blast

MCV VP2, CMV promoter, non-replicating.  Too big to package

 

pCM

[34]

pCM

yes

amp

MCV VP1 expression, CMV promoter.  Too big to package

 

 

 

 

 

 

 

MPyV

pwP

[32]

pwP

AddGene.org

zeo

Mouse polyomavirus (MPyV) VP1 expression construct

 

ph2p

[32]

ph2p

AddGene.org

zeo

MPyV VP2 expression construct

 

ph3p

[32]

ph3p

AddGene.org

zeo

MPyV VP3 expression construct

 

 

 

 

 

 

 

BoPyV

pBoPyV1-S22

[35]

pFF-S5BPyV1clonex

AddGene.org

zeo

Re-ligatable bovine polyomavirus 1 isolate 1S22

 

pBoPyV2a-S22

[35]

pFF-S11BPyV2aclone2

AddGene.org

zeo

Re-ligatable bovine polyomavirus 2a isolate 2aS22

 

pBoPyV2b-S24

[35]

pFF-S5BPyV2bcloneq

AddGene.org

zeo

Re-ligatable bovine polyomavirus 2b isolate 2bS24

 

pBoPyV3-S22

[35]

pFF-BPyV3clone1

AddGene.org

zeo

Re-ligatable bovine polyomavirus 3 isolate 3S22

 

pBoPyV3-S23

[35]

pFF-BPyV3clone2

AddGene.org

zeo

Re-ligatable bovine polyomavirus 3 isolate 3S23

 

 

 

 

 

 

 

Adomaviruses

 

 

 

 

 

 

Marbled eel

unpublished

pAdOM-E

yes

zeo

Marbled eel adomavirus AclI-EcoRI fragment (early region)

 

unpublished

pAdOM-L

yes

zeo

Marbled eel adomavirus AclI-EcoRI fragment (late region)

 

unpublished

 

yes

zeo

Marbled eel adomavirus late ORF expression (EF1alpha promoter)

 

unpublished

 

yes

zeo

Marbled eel adomavirus late ORF expression (EF1alpha promoter)

 

unpublished

 

yes

zeo

Marbled eel adomavirus late ORF expression (EF1alpha promoter)

 

unpublished

 

yes

zeo

Marbled eel adomavirus late ORF expression (EF1alpha promoter)

 

unpublished

 

yes

zeo

Marbled eel adomavirus late ORF expression (EF1alpha promoter)

 

unpublished

 

yes

zeo

Marbled eel adomavirus late ORF expression (EF1alpha promoter)

 

unpublished

 

yes

zeo

Marbled eel adomavirus late ORF expression (EF1alpha promoter)

 

 

 

 

 

 

 

*Plasmids >10kb can be unstable in E. coli.  

 

 

 

 

Growing bacterial starter cultures at 30ºC and/or using Invitrogen STBL2 or Stratagene XL10-Gold bacteria may decrease the risk of plasmid collapse.

 

 

1.         Buck, C.B., D.V. Pastrana, D.R. Lowy, and J.T. Schiller, Efficient intracellular assembly of papillomaviral vectors.J Virol, 2004. 78(2): p. 751-7.

http://www.ncbi.nlm.nih.gov/pubmed/14694107

 

2.         Roberts, J.N., C.B. Buck, C.D. Thompson, R. Kines, M. Bernardo, P.L. Choyke, D.R. Lowy, and J.T. Schiller, Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan.Nat Med, 2007. 13(7): p. 857-61.

http://www.ncbi.nlm.nih.gov/pubmed/17603495

 

3.         Senger, T., L. Schadlich, S. Textor, C. Klein, K.M. Michael, C.B. Buck, and L. Gissmann, Virus-like particles and capsomeres are potent vaccines against cutaneous alpha HPVs.Vaccine, 2010. 28(6): p. 1583-93.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20003923

 

4.         Wang, W., C. Wang, S. Xu, C. Chen, X. Tong, Y. Liang, X. Dong, Y. Lei, X. Zheng, J. Yu, and J. Wang, Detection of HPV-2 and identification of novel mutations by whole genome sequencing from biopsies of two patients with multiple cutaneous horns.J Clin Virol, 2007.39(1): p. 34-42.

http://www.ncbi.nlm.nih.gov/pubmed/17368088

 

5.         Faust, H., K. Andersson, O. Forslund, and J. Dillner, Pseudovirion-binding and neutralizing antibodies to cutaneous human papillomaviruses (HPV) correlated with the presence of HPV DNA in skin.J Gen Virol, 2013. 94(Pt 5): p. 1096-103.

https://www.ncbi.nlm.nih.gov/pubmed/23343629

 

6.         Buck, C.B., C.D. Thompson, J.N. Roberts, M. Muller, D.R. Lowy, and J.T. Schiller, Carrageenan is a potent inhibitor of papillomavirus infection.PLoS Pathog, 2006. 2(7): p. e69.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16839203

 

7.         Pastrana, D.V., R. Gambhira, C.B. Buck, Y.Y. Pang, C.D. Thompson, T.D. Culp, N.D. Christensen, D.R. Lowy, J.T. Schiller, and R.B. Roden, Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2.Virology, 2005. 337(2): p. 365-72.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15885736

 

8.         Mossadegh, N., L. Gissmann, M. Muller, H. Zentgraf, A. Alonso, and P. Tomakidi, Codon optimization of the human papillomavirus 11 (HPV 11) L1 gene leads to increased gene expression and formation of virus-like particles in mammalian epithelial cells.Virology, 2004. 326(1): p. 57-66.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15262495

 

9.         Kieback, E. and M. Muller, Factors influencing subcellular localization of the human papillomavirus L2 minor structural protein.Virology, 2006. 345(1): p. 199-208.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16257028

 

10.       Leder, C., J.A. Kleinschmidt, C. Wiethe, and M. Muller, Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes.J Virol, 2001. 75(19): p. 9201-9.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11533183

 

11.       Buck, C.B. and C.D. Thompson, Production of papillomavirus-based gene transfer vectors.Curr Protoc Cell Biol, 2007. Chapter 26: p. Unit 26.1.

http://www.ncbi.nlm.nih.gov/pubmed/18228512

 

12.       Buck, C.B., N. Cheng, C.D. Thompson, D.R. Lowy, A.C. Steven, J.T. Schiller, and B.L. Trus, Arrangement of L2 within the papillomavirus capsid.J Virol, 2008. 82(11): p. 5190-7.

 

13.       Pastrana, D.V., C.B. Buck, Y.Y. Pang, C.D. Thompson, P.E. Castle, P.C. FitzGerald, S. Kruger Kjaer, D.R. Lowy, and J.T. Schiller, Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18.Virology, 2004. 321(2): p. 205-16.

http://www.ncbi.nlm.nih.gov/pubmed/15051381

 

14.       Kondo, K., Y. Ishii, H. Ochi, T. Matsumoto, H. Yoshikawa, and T. Kanda, Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region.Virology, 2007. 358(2): p. 266-72.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17010405

 

15.       Draper, E., S.L. Bissett, R. Howell-Jones, D. Edwards, G. Munslow, K. Soldan, and S. Beddows, Neutralization of Non-Vaccine Human Papillomavirus Pseudoviruses from the A7 and A9 Species Groups by Bivalent HPV Vaccine Sera.Vaccine, 2011. 29: p. 8585-90.

https://www.ncbi.nlm.nih.gov/pubmed/21939712

 

16.       Faust, H., P. Knekt, O. Forslund, and J. Dillner, Validation of multiplexed human papillomavirus serology using pseudovirions bound to heparin coated beads.J Gen Virol, 2010.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20181747

 

17.       Kondo, K., H. Ochi, T. Matsumoto, H. Yoshikawa, and T. Kanda, Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes.J Med Virol, 2008. 80(5): p. 841-6.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18360909

 

18.       Kwak, K., R. Jiang, J.W. Wang, S. Jagu, R. Kirnbauer, and R.B. Roden, Impact of inhibitors and L2 antibodies upon the infectivity of diverse alpha and beta human papillomavirus types.PLoS One, 2014. 9(5): p. e97232.

http://www.ncbi.nlm.nih.gov/pubmed/24816794

 

19.       Handisurya, A., P.M. Day, C.D. Thompson, C.B. Buck, K. Kwak, R.B. Roden, D.R. Lowy, and J.T. Schiller, Murine skin and vaginal mucosa are similarly susceptible to infection by pseudovirions of different papillomavirus classifications and species.Virology, 2012. 433(2): p. 385-94.

http://www.ncbi.nlm.nih.gov/pubmed/22985477

 

20.       Joh, J., A.B. Jenson, W. King, M. Proctor, A. Ingle, J.P. Sundberg, and S.J. Ghim, Genomic analysis of the first laboratory-mouse papillomavirus.The Journal of general virology, 2011. 92(Pt 3): p. 692-8.

http://www.ncbi.nlm.nih.gov/pubmed/21084500

 

21.       Ingle, A., S. Ghim, J. Joh, I. Chepkoech, A. Bennett Jenson, and J.P. Sundberg, Novel laboratory mouse papillomavirus (MusPV) infection.Vet Pathol, 2011. 48(2): p. 500-5.

http://www.ncbi.nlm.nih.gov/pubmed/20685915

 

22.       Handisurya, A., P.M. Day, C.D. Thompson, C.B. Buck, Y.Y. Pang, D.R. Lowy, and J.T. Schiller, Characterization of Mus musculus Papillomavirus 1 (MusPV1) Infection in Situ Reveals an Unusual Pattern of Late Gene Expression and Capsid Protein Localization.J Virol, 2013. 87(24): p. 13214-25.

 

23.       Nakanishi, A., B. Chapellier, N. Maekawa, M. Hiramoto, T. Kuge, R.U. Takahashi, H. Handa, and T. Imai, SV40 vectors carrying minimal sequence of viral origin with exchangeable capsids.Virology, 2008. 379(1): p. 110-7.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18667220

 

24.       Pastrana, D.V., U. Ray, T.G. Magaldi, R.M. Schowalter, N. Çuburu, and C.B. Buck, BK Polyomavirus Genotypes Represent Distinct Serotypes with Distinct Entry Tropisms.J Virol, 2013. 87(18): p. 10105-13.

http://www.ncbi.nlm.nih.gov/pubmed/23843634

 

25.       Schowalter, R.M., D.V. Pastrana, and C.B. Buck, Glycosaminoglycans and sialylated glycans sequentially facilitate merkel cell polyomavirus infectious entry.PLoS Pathog, 2011. 7(7): p. e1002161.

http://www.ncbi.nlm.nih.gov/pubmed/21829355

 

26.       Zhong, S., P.S. Randhawa, H. Ikegaya, Q. Chen, H.Y. Zheng, M. Suzuki, T. Takeuchi, A. Shibuya, T. Kitamura, and Y. Yogo, Distribution patterns of BK polyomavirus (BKV) subtypes and subgroups in American, European and Asian populations suggest co-migration of BKV and the human race.J Gen Virol, 2009. 90(Pt 1): p. 144-52.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19088283

 

27.       Schowalter, R.M., D.V. Pastrana, K.A. Pumphrey, A.L. Moyer, and C.B. Buck, Merkel Cell Polyomavirus and Two Previously Unknown Polyomaviruses Are Chronically Shed From Human Skin.Cell Host Microbe, 2010. 7(6): p. 509-15.

http://www.ncbi.nlm.nih.gov/pubmed/20542254

 

28.       Buck, C.B., G.Q. Phan, M.T. Raiji, P.M. Murphy, D.H. McDermott, and A.A. McBride, Complete genome sequence of a tenth human polyomavirus.Journal of virology, 2012. 86(19): p. 10887.

http://www.ncbi.nlm.nih.gov/pubmed/22966183

 

29.       Siebrasse, E.A., A. Reyes, E.S. Lim, G. Zhao, R.S. Mkakosya, M.J. Manary, J.I. Gordon, and D. Wang, Identification of MW polyomavirus, a novel polyomavirus in human stool.J Virol, 2012. 86(19): p. 10321-6.

http://www.ncbi.nlm.nih.gov/pubmed/22740408

 

30.       Maginnis, M.S., L.J. Stroh, G.V. Gee, B.A. O'Hara, A. Derdowski, T. Stehle, and W.J. Atwood, Progressive multifocal leukoencephalopathy-associated mutations in the JC polyomavirus capsid disrupt lactoseries tetrasaccharide c binding.MBio, 2013. 4(3): p. e00247-13.

http://www.ncbi.nlm.nih.gov/pubmed/23760462

 

31.       Neumann, F., S. Borchert, C. Schmidt, R. Reimer, H. Hohenberg, N. Fischer, and A. Grundhoff, Replication, Gene Expression and Particle Production by a Consensus Merkel Cell Polyomavirus (MCPyV) Genome.PLoS One, 2011. 6(12): p. e29112.

http://www.ncbi.nlm.nih.gov/pubmed/22216177

 

32.       Tolstov, Y.L., D.V. Pastrana, H. Feng, J.C. Becker, F.J. Jenkins, S. Moschos, Y. Chang, C.B. Buck, and P.S. Moore, Human Merkel cell polyomavirus infection II.  MCV is a common human infection that can be detected by conformational capsid epitope immunoassays.Int J Cancer, 2009.125(6): p. 1250-6.

 

33.       Pastrana, D.V., K.A. Pumphrey, N. Çuburu, R.M. Schowalter, and C.B. Buck, Characterization of monoclonal antibodies specific for the Merkel cell polyomavirus capsid.Virology, 2010. 405(1): p. 20-5.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20598728

 

34.       Schowalter, R.M. and C.B. Buck, The Merkel cell polyomavirus minor capsid protein.PLoS Pathog, 2013. 9(8): p. e1003558.

http://www.ncbi.nlm.nih.gov/pubmed/23990782

 

35.       Peretti, A., P.C. FitzGerald, V. Bliskovsky, C.B. Buck, and D.V. Pastrana, Hamburger polyomaviruses.J Gen Virol, 2015.

http://www.ncbi.nlm.nih.gov/pubmed/25568187

 

36.  Ray U, Cinque P, Gerevini S, Longo V, Schippling S, Martin R, Buck CB, Pastrana DV: JC Polyomavirus Mutants Escape Antibody-Mediated NeutralizationScience Translational Medicine 2015, 7:306ra151. 

https://www.ncbi.nlm.nih.gov/pubmed/29091757

  

Last updated by Buck, Christopher (NIH/NCI) [E] on Oct 03, 2019